Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Nat. Hazards Earth Syst. Sci., 10, 2199-2213, 2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
29 Oct 2010
Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations
C. Claud1, B. Alhammoud1, B. M. Funatsu1, and J.-P. Chaboureau2 1Laboratoire de Météorologie Dynamique/IPSL, CNRS, UMR8539, Ecole Polytechnique, Palaiseau, France
2Laboratoire d'Aérologie, University of Toulouse and CNRS, Toulouse, France
Abstract. Subsynoptic scale vortices that have been likened to tropical cyclones or polar lows (medicanes) are occasionally observed over the Mediterranean Sea. Generated over the sea, they are usually associated with strong winds and heavy precipitation and thus can be highly destructive in islands and costal areas. Only an accurate forecasting of such systems could mitigate these effects. However, at the moment, the predictability of these systems remains limited.

Due to the scarcity of conventional observations, use is made of NOAA/MetOp satellite observations, for which advantage can be taken of the time coverage differences between the platforms that carry it, to give a very complete temporal description of the disturbances. A combination of AMSU-B (Advanced Microwave Sounding Unit-B)/MHS (Microwave Humidity Sounder) observations permit to investigate precipitation associated with these systems while coincident AMSU-A (Advanced Microwave Sounding Unit-A) observations give insights into the larger synoptic-scale environment in which they occur.

Three different cases (in terms of intensity, location, trajectory, duration, and periods of the year – May, September and December, respectively) were investigated. Throughout these time periods, AMSU-A observations show that the persisting deep outflow of cold air over the sea together with an upper-level trough upstream constituted a favourable environment for the development of medicanes. AMSU-B/MHS based diagnostics show that convection and precipitation areas are large in the early stage of the low, but significantly reduced afterwards. Convection is maximum just after the upper-level trough, located upstream of cold mid-tropospheric air, reached its maximum intensity and acquired a cyclonic orientation.

Citation: Claud, C., Alhammoud, B., Funatsu, B. M., and Chaboureau, J.-P.: Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations, Nat. Hazards Earth Syst. Sci., 10, 2199-2213, doi:10.5194/nhess-10-2199-2010, 2010.
Publications Copernicus