Journal Metrics

  • IF value: 1.826 IF 1.826
  • IF 5-year<br/> value: 2.075 IF 5-year
    2.075
  • SNIP value: 1.235 SNIP 1.235
  • IPP value: 1.862 IPP 1.862
  • SJR value: 0.938 SJR 0.938
  • h5-index value: 38 h5-index 38
Nat. Hazards Earth Syst. Sci., 14, 611-624, 2014
www.nat-hazards-earth-syst-sci.net/14/611/2014/
doi:10.5194/nhess-14-611-2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Evaluating a mesoscale atmosphere model and a satellite-based algorithm in estimating extreme rainfall events in northwestern Turkey
I. Yucel and A. Onen
Department of Civil Engineering, Water Resources Lab, Middle East Technical University, Ankara, Turkey

Abstract. Quantitative precipitation estimates are obtained with more uncertainty under the influence of changing climate variability and complex topography from numerical weather prediction (NWP) models. On the other hand, hydrologic model simulations depend heavily on the availability of reliable precipitation estimates. Difficulties in estimating precipitation impose an important limitation on the possibility and reliability of hydrologic forecasting and early warning systems. This study examines the performance of the Weather Research and Forecasting (WRF) model and the Multi Precipitation Estimates (MPE) algorithm in producing the temporal and spatial characteristics of the number of extreme precipitation events observed in the western Black Sea region of Turkey. Precipitation derived from WRF model with and without the three-dimensional variational (3DVAR) data assimilation scheme and MPE algorithm at high spatial resolution (5 km) are compared with gauge precipitation. WRF-derived precipitation showed capabilities in capturing the timing of precipitation extremes and to some extent the spatial distribution and magnitude of the heavy rainfall events, whereas MPE showed relatively weak skills in these aspects. WRF skills in estimating such precipitation characteristics are enhanced with the application of the 3DVAR scheme. Direct impact of data assimilation on WRF precipitation reached up to 12% and at some points there is a quantitative match for heavy rainfall events, which are critical for hydrological forecasts.

Citation: Yucel, I. and Onen, A.: Evaluating a mesoscale atmosphere model and a satellite-based algorithm in estimating extreme rainfall events in northwestern Turkey, Nat. Hazards Earth Syst. Sci., 14, 611-624, doi:10.5194/nhess-14-611-2014, 2014.
 
Search NHESS
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share