Articles | Volume 15, issue 8
https://doi.org/10.5194/nhess-15-1721-2015
https://doi.org/10.5194/nhess-15-1721-2015
Research article
 | 
04 Aug 2015
Research article |  | 04 Aug 2015

Towards predictive data-driven simulations of wildfire spread – Part II: Ensemble Kalman Filter for the state estimation of a front-tracking simulator of wildfire spread

M. C. Rochoux, C. Emery, S. Ricci, B. Cuenot, and A. Trouvé

Related authors

Assimilation of wide-swath altimetry water elevation anomalies to correct large-scale river routing model parameters
Charlotte Marie Emery, Sylvain Biancamaria, Aaron Boone, Sophie Ricci, Mélanie C. Rochoux, Vanessa Pedinotti, and Cédric H. David
Hydrol. Earth Syst. Sci., 24, 2207–2233, https://doi.org/10.5194/hess-24-2207-2020,https://doi.org/10.5194/hess-24-2207-2020, 2020
Short summary
Towards predictive data-driven simulations of wildfire spread – Part I: Reduced-cost Ensemble Kalman Filter based on a Polynomial Chaos surrogate model for parameter estimation
M. C. Rochoux, S. Ricci, D. Lucor, B. Cuenot, and A. Trouvé
Nat. Hazards Earth Syst. Sci., 14, 2951–2973, https://doi.org/10.5194/nhess-14-2951-2014,https://doi.org/10.5194/nhess-14-2951-2014, 2014
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024,https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023,https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Automated Avalanche Terrain Exposure Scale (ATES) mapping – Local validation and optimization in Western Canada
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-112,https://doi.org/10.5194/nhess-2023-112, 2023
Revised manuscript accepted for NHESS
Short summary
Early warning system for ice collapses and river blockages in the Sedongpu Valley, southeastern Tibetan Plateau
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023,https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Fire risk modeling: an integrated and data-driven approach applied to Sicily
Alba Marquez Torres, Giovanni Signorello, Sudeshna Kumar, Greta Adamo, Ferdinando Villa, and Stefano Balbi
Nat. Hazards Earth Syst. Sci., 23, 2937–2959, https://doi.org/10.5194/nhess-23-2937-2023,https://doi.org/10.5194/nhess-23-2937-2023, 2023
Short summary

Cited articles

Andrews, P. L., Cruz, M. G., and Rothermel, R. C.: Examination of the wind speed limit function in the Rothermel surface fire spread model, Int. J. Wildland Fire, 22, 959–969, 2013.
Balbi, J.-H., Morandini, F., Silvani, X., Filippi, J.-B., and Rinieri, F.: A physical model for wildland fires, Comb. Flame, 156, 2217–2230, 2009.
Buis, S., Piacentini, A., and Declat, D.: PALM: a computational framework for assembling high performance computing applications, Concurr. Comp.-Pract. E., 18, 247–262, 2006.
Burgan, R.: 1988 revisions to the 1978 national fire-danger rating system, Technical Report Research Paper SE-273, US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, Asheville, NC, USA, 1988.
Burgers, G., van Leeuwen, P., and Evensen, G.: Analysis scheme in the ensemble kalman filter, Mon. Weather Rev., 126, 1719–1724, 1998.
Short summary
This paper, the second part in a series of two articles, aims at presenting a data-driven modeling strategy for forecasting wildfire spread scenarios based on the assimilation of the observed fire front location and on the sequential correction of model parameters or model state. The objective here is to sequentially update the fire front location in order to provide a more reliable initial condition for further model integration and forecast.
Altmetrics
Final-revised paper
Preprint