Articles | Volume 15, issue 10
https://doi.org/10.5194/nhess-15-2369-2015
https://doi.org/10.5194/nhess-15-2369-2015
Research article
 | 
22 Oct 2015
Research article |  | 22 Oct 2015

Analysis of a landslide multi-date inventory in a complex mountain landscape: the Ubaye valley case study

R. Schlögel, J.-P. Malet, P. Reichenbach, A. Remaître, and C. Doubre

Abstract. In the paper we analyse a multi-date landslide inventory prepared for a mountainous area affected by several landslide types with different degrees of activity, we attempt to quantify the uncertainties associated to the mapping, we measure the evolution of morphological indicators and estimate landslide activity and temporal occurrence. The inventory, covering the period 1956–2010, is prepared for the middle section of the Ubaye valley (southern French Alps) based on the analysis of multi-source documents (geomorphological maps, historical reports of landslide events, field surveys, orthophotographs and SAR (synthetic aperture radar) satellite images). The uncertainties derived from the expert interpretation of different sources of information, the landslide morphological features and the affected land covers are taken into account in relation to the source documents.

Morphological indicators are calculated to describe quantitatively the evolution of the landslides (length, area, relative elevation, runout distance). Frequency–area density functions are computed to estimate the changes in the landslide distributions and a Poisson model is used to estimate the probability of reactivation of the observed landslides and the occurrence of new failures. The proposed multi-date inventory and the associated statistics provide additional information to the event catalogue managed by the local policy makers.

Download
Short summary
The paper proposes an approach to prepare a multi-date landslide inventory for the Ubaye valley (French Alps), a complex mountainous area affected by several landslide types with different degrees of activity. The inventory covering the period 1956-2010 have been analysed in order to quantify the uncertainties associated to the mapping, to measure the evolution of morphological indicators and to estimate temporal occurrence. Evolution of landslide activity is compared to other inventory sources.
Altmetrics
Final-revised paper
Preprint