Articles | Volume 17, issue 5
https://doi.org/10.5194/nhess-17-641-2017
https://doi.org/10.5194/nhess-17-641-2017
Research article
 | 
10 May 2017
Research article |  | 10 May 2017

A numerical study of tsunami wave impact and run-up on coastal cliffs using a CIP-based model

Xizeng Zhao, Yong Chen, Zhenhua Huang, Zijun Hu, and Yangyang Gao

Related subject area

Sea, Ocean and Coastal Hazards
An interdisciplinary agent-based evacuation model: integrating the natural environment, built environment, and social system for community preparedness and resilience
Chen Chen, Charles Koll, Haizhong Wang, and Michael K. Lindell
Nat. Hazards Earth Syst. Sci., 23, 733–749, https://doi.org/10.5194/nhess-23-733-2023,https://doi.org/10.5194/nhess-23-733-2023, 2023
Short summary
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023,https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023,https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023,https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023,https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary

Cited articles

Baptista, A. M., Priest, G. R., and Murty, T. S. M.: Field survey of the 1992 Nicaragua tsunami, Mar. Geod., 16, 169–203, https://doi.org/10.1080/15210609309379687, 1993.
Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, Journal de Mathématiques Pures et Appliquées, 17, 55–108, 1872.
Dao, M. H., Xu, H., Chan, E. S., and Tkalich, P.: Modelling of tsunami-like wave run-up, breaking and impact on a vertical wall by SPH method, Nat. Hazards Earth Syst. Sci., 13, 3457–3467, https://doi.org/10.5194/nhess-13-3457-2013, 2013.
Dawson, A. G.: Geomorphological effects of tsunami run-up and backwash, Geomorphology, 10, 83–94, https://doi.org/10.1016/0169-555X(94)90009-4, 1994.
Fu, Y., Zhao, X., Cao, F., Zhang, D., Cheng, D., and Li, L.: Numerical simulation of viscous flow past an oscillating square cylinder using a CIP-based model, J. Hydrodyn., Ser. B, 29, 96–108, https://doi.org/10.1016/S1001-6058(16)60721-7, 2017.
Download
Short summary
Numerical simulations are performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of submarine gentle slopes and coastal cliffs using an in-house code. The run-up on a toe-erosion cliff is smaller than that on a normal cliff. Two impact pressure peaks exist during the tsunami wave run-up and impact. One is the direct impact pressure when tsunami waves first hit the coastal cliff, and the other is caused by the backflow from the cliff run-up.
Altmetrics
Final-revised paper
Preprint