Articles | Volume 17, issue 5
https://doi.org/10.5194/nhess-17-801-2017
https://doi.org/10.5194/nhess-17-801-2017
Research article
 | Highlight paper
 | 
01 Jun 2017
Research article | Highlight paper |  | 01 Jun 2017

Debris-flow modeling at Meretschibach and Bondasca catchments, Switzerland: sensitivity testing of field-data-based entrainment model

Florian Frank, Brian W. McArdell, Nicole Oggier, Patrick Baer, Marc Christen, and Andreas Vieli

Related authors

The importance of entrainment and bulking on debris flow runout modeling: examples from the Swiss Alps
F. Frank, B. W. McArdell, C. Huggel, and A. Vieli
Nat. Hazards Earth Syst. Sci., 15, 2569–2583, https://doi.org/10.5194/nhess-15-2569-2015,https://doi.org/10.5194/nhess-15-2569-2015, 2015
Short summary

Related subject area

Landslides and Debris Flows Hazards
Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024,https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024,https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Space–time landslide hazard modeling via Ensemble Neural Networks
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024,https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Optimization strategy for flexible barrier structures: investigation and back analysis of a rockfall disaster case in southwestern China
Li-Ru Luo, Zhi-Xiang Yu, Li-Jun Zhang, Qi Wang, Lin-Xu Liao, and Li Peng
Nat. Hazards Earth Syst. Sci., 24, 631–649, https://doi.org/10.5194/nhess-24-631-2024,https://doi.org/10.5194/nhess-24-631-2024, 2024
Short summary
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
Sudhanshu Dixit, Srikrishnan Siva Subramanian, Piyush Srivastava, Ali P. Yunus, Tapas Ranjan Martha, and Sumit Sen
Nat. Hazards Earth Syst. Sci., 24, 465–480, https://doi.org/10.5194/nhess-24-465-2024,https://doi.org/10.5194/nhess-24-465-2024, 2024
Short summary

Cited articles

Bartelt, P., Salm, B., and Gruber, U.: Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining, J. Glaciol., 45, 242–254, 1999.
Bartelt, P., Buehler, Y., Christen, M., Deubelbeiss, Y., Graf, C., and McArdell, B. W.: RAMMS – rapid mass movement simulation, A modeling system for debris flows in research and practice, user manual v1.5, debris flow, manuscript update: 31 January 2013, WSL Institute for Snow and Avalanche Research SLF, available at: http://ramms.slf.ch/ramms/downloads/RAMMS_DBF_Manual.pdf (last access: 27 February 2015), 2013.
Beguería, S., Van Asch, Th. W. J., Malet, J.-P., and Gröndahl, S.: A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain, Nat. Hazards Earth Syst. Sci., 9, 1897–1909, https://doi.org/10.5194/nhess-9-1897-2009, 2009.
Benda, L.: The influence of debris flows on channels and valley floors in the Oregon Coast Range, USA, Earth Surf. Proc. Land., 15, 457–466, 1990.
Berger, C., McArdell, B. W., Fritschi, B., and Schlunegger, F.: A novel method for measuring the timing of bed erosion during debris flows and floods, Water Resour. Res., 46, W02502, https://doi.org/10.1029/2009WR007993, 2010a.
Short summary
This study describes a sensitivity analysis of the RAMMS debris-flow entrainment model, which is intended to help solve problems related to predicting the runout of debris flows. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. These eroded volumes are sensitive to the initial landslide volume, suggesting that this tool may be useful for both reconstruction of historical events and modeling of debris flow scenarios.
Altmetrics
Final-revised paper
Preprint