Journal Metrics

  • IF value: 1.826 IF 1.826
  • IF 5-year<br/> value: 2.075 IF 5-year
    2.075
  • SNIP value: 1.235 SNIP 1.235
  • IPP value: 1.862 IPP 1.862
  • SJR value: 0.938 SJR 0.938
  • h5-index value: 38 h5-index 38
Nat. Hazards Earth Syst. Sci., 3, 321-332, 2003
www.nat-hazards-earth-syst-sci.net/3/321/2003/
doi:10.5194/nhess-3-321-2003
© Author(s) 2003. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption
B. H. Choi1, E. Pelinovsky2, K. O. Kim3, and J. S. Lee1
1Department of Civil and Environmental Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
2Laboratory of Hydrophysics and Nonlinear Acoustics, Institute of Applied Physics, 46 Uljanov Street, 603950, Nizhny Novgorod, Russia
3Research Center for Disaster Environment, DPRI, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan

Abstract. The 1883 Krakatau volcanic eruption has generated a destructive tsunami higher than 40 m on the Indonesian coast where more than 36 000 lives were lost. Sea level oscillations related with this event have been reported on significant distances from the source in the Indian, Atlantic and Pacific Oceans. Evidence of many manifestations of the Krakatau tsunami was a subject of the intense discussion, and it was suggested that some of them are not related with the direct propagation of the tsunami waves from the Krakatau volcanic eruption. Present paper analyzes the hydrodynamic part of the Krakatau event in details. The worldwide propagation of the tsunami waves generated by the Krakatau volcanic eruption is studied numerically using two conventional models: ray tracing method and two-dimensional linear shallow-water model. The results of the numerical simulations are compared with available data of the tsunami registration.

Citation: Choi, B. H., Pelinovsky, E., Kim, K. O., and Lee, J. S.: Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption, Nat. Hazards Earth Syst. Sci., 3, 321-332, doi:10.5194/nhess-3-321-2003, 2003.
 
Search NHESS
Special Issue
Final Revised Paper
PDF XML
Citation
Share