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Abstract. The purpose of this study was to apply and ver-
ify landslide-susceptibility analysis techniques using an ar-
tificial neural network and a Geographic Information Sys-
tem (GIS) applied to Baguio City, Philippines. The 16 July
1990 earthquake-induced landslides were studied. Landslide
locations were identified from interpretation of aerial pho-
tographs and field survey, and a spatial database was con-
structed from topographic maps, geology, land cover and ter-
rain mapping units. Factors that influence landslide occur-
rence, such as slope, aspect, curvature and distance from
drainage were calculated from the topographic database.
Lithology and distance from faults were derived from the
geology database. Land cover was identified from the to-
pographic database. Terrain map units were interpreted from
aerial photographs. These factors were used with an artifi-
cial neural network to analyze landslide susceptibility. Each
factor weight was determined by a back-propagation exer-
cise. Landslide-susceptibility indices were calculated us-
ing the back-propagation weights, and susceptibility maps
were constructed from GIS data. The susceptibility map was
compared with known landslide locations and verified. The
demonstrated prediction accuracy was 93.20%.

1 Introduction

Landslides cause extensive damage to property and occasion-
ally result in the loss of life. Recently, landslides have oc-
curred in the Philippines. It is, therefore, necessary to as-
sess and manage areas that are susceptible to land sliding in
order to mitigate any associated damage. Among the many
causes of landslides, those triggered by earthquake and heavy
rainfall are the most common throughout the Philippines.
The consequent requirement to predict such occurrences has
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led to the development of numerous stochastic and process-
based models with an increasing emphasis on the use of a
GIS.

To achieve a scientific assessment of an area susceptible to
land sliding, an artificial neural network may be applied, and
the objective of this study was to apply and verify models of
landslide-susceptibility zonation in the Baguio city area of
the Philippines using this approach.

Landslides may occur as a consequence of a number of
determined trigger factors (Varnes, 1978). In order to as-
sess the potential for landslide, it is a requirement to iden-
tify and analyze the influencing factors. In this study,
the following parameters were used: slope, aspect, curva-
ture, proximity to drainage, lithology, proximity to faults,
land cover and geomorphologic/terrain units. The 16 July
1990 earthquake-induced landslides were used as a basis
for landslide-susceptibility mapping (Arboleda and Regal-
ado, 1990).

Using GIS as the basic analysis tool for landslide hazard
mapping can be effective for spatial and data management
and manipulation, together with some reasonable models for
the analysis. In this regard, there have been many studies of
landslide hazard mapping using GIS. There have been many
studies carried out on landslide hazard evaluation using GIS;
for example, Guzzetti et al. (1999) summarized many land-
slide hazard evaluation studies. Recently, there have been
studies on landslide hazard evaluation using GIS, and many
of these studies have applied probabilistic models (Jibson et
al., 2000; Luzi et al., 2000; Parise and Jibson, 2000; Rautelal
and Lakheraza, 2000; Baeza and Corominas, 2001; Lee and
Min, 2001; Clerici et al., 2002; Donati and Turrini, 2002;
Lee et al., 2002a, b, 2004a; Zhou et al., 2002; Lee and Choi,
2003). One of the statistical models available, the logistic
regression models, has also been applied to landslide hazard
mapping (Dai et al., 2001; Dai and Lee, 2002; Ohlmacher
and Davis, 2003), as has the geotechnical model and the
safety factor model (Gokceoglu et al., 2000; Romeo, 2000;
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Fig. 1. Study area Fig. 1. Study area.

Refice and Capolongo, 2002; Carro et al., 2003; Shou and
Wang, 2003; Zhou et al., 2003). As a new approach to land-
slide hazard evaluation using GIS, data mining using fuzzy
logic, and artificial neural network models have been applied

 

 

Fig. 2. Geological Map 
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Fig. 2. Geological Map.

(Ercanoglu and Gokceoglu, 2002; Pistocchi et al., 2002; Lee
et al., 2003a, b, 2004b).

2 Study area

Terramont Foundation (1992) stated that within the study
area of Baguio City, development presently continues with-
out the benefit of a working extant land use plan. This has
resulted in the creation of an uncontrolled urban sprawl,
with a proliferation of squatter colonies on both private
and public land, and a high population density reflected in
an overcrowded city experiencing increasingly mixed urban
land use. Most development involves massive movement of
ground within and beyond feasible construction areas, giving
rise to possible erosion, floods and landslide hazards.

The study area (Fig. 1) lies within 16◦23′00′′–16◦29′00′′

latitude and 120◦34′00′′–120◦37′00′′ longitude It is located
along the main trace and splays of the Philippine Fault which
is a major seismic feature. Of particular interest are the
northwest–southeast trending splays of this structure that are
the western Tuba Fault and the Tebbo Fault to the east. Both
of these faults are located less than 5 km. away from the city
center (Pinet and Stephan, 1990).

Geology plays an important role in landslide potential, and
the composition of the study area (Fig. 2) was taken from the
work of PINA (1994) and David (1997). Four formations
occur, and these are from the base:

(1) Zigzag Formation:conglomerate, sandstone and some
limestone lenses.
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(2) Kennon Formation: principally massive biohermal
limestone, calcarenite and calcirudite. The basal por-
tion consists of wacke, conglomeratic calcarenite with
volcanic diorite pebble and cobble clasts.

(3) Klondyke Formation:clastic sedimentary rock consist-
ing mainly of polymictic conglomerate with interbed-
ded sandstone, siltstone and shale and in places interca-
lated with flow breccia and pyroclastic rock. It rests un-
conformably upon the Kennon Limestone and underlies
wide areas on the elevated western side of the Baguio
City Quadrangle.

(4) Baguio Formation: tuff, volcanic conglomerate and
breccia, glassy and porphyritic andesite, with minor
sandstone layers.

3 Ground acceleration map

To verify and compare the landslide-susceptibility maps, the
existing ground acceleration map (Fig. 3) was used. Al-
though ground-motion hazard studies for the Philippines
were made (Tenhaus et al., 1994) after the 1990 Baguio
earthquake, the maps produced for peak horizontal ground
acceleration are regional in scope and probabilistic in nature.
Consequently, ground acceleration maps using a more deter-
ministic approach have been employed. These engage the re-
cent attenuation equation of Fukushima and Tanaka (1990).
The relation is as follows:

Log10A = 0.41M − log 10(R + 0.032× 100.41M) − 0.0034R + 1.30 (1)

where A is the mean peak acceleration (in cm/s2), R is the
shortest distance between the site and fault rupture (km) and
M is the magnitude of the earthquake.

The equivalent ground acceleration in terms of gravity, g,
is computed using the equation:

g = A/(980 cm/s2). (2)

In assessing the distanceR in Eq. (1), both the Tuba and
Tebbo faults were regarded as seismic sources.R in Eq. (1)
is the shortest distance measured from a grid point to either
the Tuba or Tebbo fault trace, whichever is the shorter mea-
surement of the two. The finalg value in the map is further
controlled by the geology in the area. The Baguio Forma-
tion is assigned here as the rock medium of slip. The Zigzag,
Klondyke and Kennon formations are classified as hard rock,
with a correction factor of 0.6 in considering the finalg. The
highest value computed for the grid points is 0.634092 g and
this lies within the Baguio Formation. The lowest value de-
rived is 0.3366503 from the Zigzag Formation.

4 Artificial neural network and weight determination

An artificial neural network is a “computational mechanism
able to acquire, represent, and compute a mapping from one
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Fig. 3. Ground acceleration map.

multivariate space of information to another, given a set of
data representing that mapping” (Garrett, 1994). The back-
propagation training algorithm is the most frequently used
neural network method and is the method used in this study.
The back-propagation training algorithm is trained using a
set of examples of associated input and output values. The
purpose of an artificial neural network is to build a model of
the data-geneweight process, so that the network can general-
ize and predict outputs from inputs that it has not previously
seen. This learning algorithm is a multi-layered neural net-
work, which consists of an input layer, hidden layers, and an
output layer. The hidden and output layer neurons process
their inputs by multiplying each input by a corresponding
weight, summing the product, and then processing the sum
using a nonlinear transfer function to produce a result. An
artificial neural network “learns” by adjusting the weights
between the neurons in response to the errors between the
actual output values and the target output values. At the end
of this training phase, the neural network provides a model
that should be able to predict a target value from a given input
value.

There are two stages involved in using neural network for
multi-source classification: the training stage, in which the
internal weights are adjusted; and the classifying stage. Typ-
ically, the back-propagation algorithm trains the network un-
til some targeted minimal error is achieved between the de-
sired and actual output values of the network. Once the train-
ing is complete, the network is used as a feed-forward struc-
ture to produce a classification for the entire data (Paola and
Schwengerdt, 1995).

www.nat-hazards-earth-syst-sci.net/6/687/2006/ Nat. Hazards Earth Syst. Sci., 6, 687–695, 2006



690 S. Lee and D. G. Evangelista: Landslide susceptibility mapping using artificial neural network

 22

 

 

 

 

Fig. 4. Architecture of neural network for ground subsidence hazard analysis. 
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Fig. 4. Architecture of neural network for ground subsidence haz-
ard. analysis.

A neural network consists of a number of interconnected
nodes. Each node is a simple processing element that re-
sponds to the weighted inputs it receives from other nodes.
The arrangement of the nodes is referred to as the network
architecture (Fig. 4). The receiving node sums the weighted
signals from all the nodes that it is connected to in the pre-
ceding layer. Formally, the input that a single node receives
is weighted according to Eq. (3).

netj =

∑
i

wij · oi (3)

wherewij represents the weights between nodesi andj , and
oi is the output from nodej , given by

oj = f (netj ). (4)

The transfer functionf is usually a non-linear sigmoid func-
tion that is applied to the weighted sum of inputs before the
signal propagates to the next layer. One advantage of a sig-
moid function is that its derivative can be expressed in terms
of the function itself:

f ′(netj ) = f (netj )(1 − f (netj )) (5)

The network used in this study consisted of three layers. The
first layer is the input layer, where the nodes were the ele-
ments of a feature vector. The second layer is the internal
or “hidden” layer. The third layer is the output layer that
presents the output data. Each node in the hidden layer is
interconnected to nodes in both the preceding and follow-
ing layers by weighted connections (Atkinson and Tatnall,
1997).

The error,E, for an input training pattern,t , is a function
of the desired output vector,d, and the actual output vector,
o, given by:

E =
1

2

∑
k

(dk − ok). (6)

The error is propagated back through the neural network and
is minimized by adjusting the weights between layers. The
weight adjustment is expressed as:

wij (n + 1) = η(δj · oi) + α1wij (7)

whereη is the learning rate parameter (set toη=0.01 in this
study),δj is an index of the rate of change of the error, and
α is the momentum parameter (set toα=0.01 in this study).
The factorδj is dependent on the layer type. For example,

for hidden layers, δj = (
∑

δkwjk)f
′(netj ) (8)

and for output layers, δj = (dk − ok)f
′(netk) (9)

This process of feeding forward signals and back-
propagating the error is repeated iteratively until the error of
the network as a whole is minimized or reaches an acceptable
magnitude.

Using the back-propagation training algorithm, the
weights of each factor can be determined and may be used
for classification of data (input vectors) that the network has
not seen before. Zhou (1999) described a method for deter-
mining the weights using back propagation. From Eq. (4),
the effect of an output,oj , from a hidden layer node,j , on
the output,ok, from an output layer (nodek) can be repre-
sented by the partial derivative ofok with respect tooj as

∂ok

∂oj

= f ′(netk) ·
∂(netk)

∂oj

= f ′(netk) · wjk. (10)

Equation (10) produces both positive and negative values. If
the effect’s magnitude is all that is of interest, then the im-
portance (weight) of nodej relative to another nodej0 in
the hidden layer may be calculated as the ratio of the abso-
lute values derived from Eq. (10):

|∂ok|∣∣∂oj

∣∣/ |∂ok|∣∣∂oj0
∣∣ =

∣∣f ′(netk) · wjk

∣∣∣∣f ′(netk) · wj0k

∣∣ =

∣∣wjk

∣∣∣∣wj0k

∣∣ . (11)

We should mention thatwj0k is simply another weight inwjk

other thanwik.
For a given node in the output layer, the results of Eq. (11)

show that the relative importance of a node in the hidden
layer is proportional to the absolute value of the weight con-
necting the node to the output layer. When the network con-
sists of output layers with more than one node, then Eq. (11)
cannot be used to compare the importance of two nodes in
the hidden layer.

wj0k =
1

J
·

J∑
j=1

∣∣wjk

∣∣ (12)

tjk =

∣∣wjk

∣∣
1
J

·

J∑
j=1

∣∣wjk

∣∣ =
J ·

∣∣wjk

∣∣
J∑

j=1

∣∣wjk

∣∣ (13)
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Therefore, with respect to nodek, each node in the hidden
layer has a value that is greater or smaller than unity, de-
pending on whether it is more or less important, respectively,
than an average value. All the nodes in the hidden layer have
a total importance with respect to the same node, given by

J∑
j=1

tjk = J. (14)

Consequently, the overall importance of nodej with respect
to all the nodes in the output layer can be calculated by

tj =
1

K
·

K∑
j=1

tjk. (15)

Similarly, with respect to nodej in the hidden layer, the nor-
malized importance of nodej in the input layer can be de-
fined by

sij =

∣∣wij

∣∣
1
I

·

I∑
i=1

∣∣wij

∣∣ =
I ·

∣∣wij

∣∣
I∑

i=1

∣∣wij

∣∣ . (16)

The overall importance of nodei with respect to the hidden
layer is

si =
1

J
·

J∑
j=1

sij . (17)

Correspondingly, the overall importance of input nodei with
respect to output nodek is given by

sti =
1

J
·

J∑
j=1

sij · tj . (18)

5 Data and methodology

Data preparation involved the digitization or creation of a
GIS database which included the topographical, geomorpho-
logical, geological and land cover data. A digitized map of
earthquake-induced landslide locations detected from satel-
lite imagery and field survey was produced, and these dig-
ital data were included in the GIS. A vector-to-raster con-
version was undertaken to provide raster data of landslides.
The factors of slope, aspect, curvature, proximity to drainage,
lithology, proximity to faults, land cover and geomorpho-
logic/terrain units were used.

Contour and survey base points that had an elevation value
read from the 1:10 000 scale topographic map were extracted
and a Digital Elevation Model (DEM) was constructed. Us-
ing the DEM, the slope gradient, slope aspect and curvature
were calculated. The slope gradient of a surface refers to the
maximum rate of change in z values across a region of the
surface and the slope aspect is the compass direction max-
imum rate of change in z in a downward direction. The

curvature represents the morphology of the topography. A
positive curvature indicates that the surface is upwardly con-
vex in that cell, and a negative shows that the surface is up-
wardly concave. A zero value represents a flat surface. The
distance from drainage was calculated in 1 m intervals. The
land use/land cover data were derived from the 1:10 000 to-
pographic map.

The lithology was taken from the 1:50 000 scale geolog-
ical map, and the distance from a lineament was measured
to the nearest 1 m interval. Distance buffers on both sides of
a fault were generated to note the occurrence of landslides
with respect to fault lines. Most of the landslides that oc-
curred following the 1990 earthquake were observed to be
within the 500 m buffer.

Landslides occur in varying terrain units, which are flood-
plain, deep, wide or shallow valleys, basin, plateau, karst,
or limestone hills. Floodplain is cultivated flat terrain. Pro-
nounced meanders occur in narrow, deep valleys with wide
drainage divides. Wide valley is a broad valley with a nar-
row floodplain dominated by active erosion processes. Shal-
low valley is characteristically narrow and shallow with steep
slopes in generally rugged terrain. Basin is a shallow de-
pression with rounded contours and poor development of
drainage lines. Plateau is well-drained round ridges and
peaks dominated by narrow plateaus rather than valleys.
Karst is rugged terrain characterized by sinkholes and poorly
defined drainage lines. Limestone hills are poorly drained,
with rounded contours and an absence of sinkholes.

The study area was divided into a grid with 10 m×10 m
cells, occupying 560 rows and 541 columns in all total-
ing 295 637 grid cells and earthquake-induced landslides oc-
curred in 61 of these.

Maps relevant to the landslide occurrences were used
first to construct a vector-type spatial database using the
ARC/INFO GIS software package. Secondly, landslide oc-
currence areas were detected during field survey of the study
area. A map of the landslide locations was made as part of
the GIS spatial database. Thirdly, for their weight determi-
nation, the landslide factors were entered into an ARC/INFO
grid type, and then converted to ASCII data for use with an
artificial neural network program.

The results of the analysis were converted to grid data us-
ing the GIS. For detected landslide location, the weight of
each factor was determined by a neural network method. de-
veloped using MATLAB (Hines, 1997). For factor weight
determination using this approach, the ground subsidence lo-
cation was assigned as an experiment area. When the weights
converged to a proper value, they were determined by back
propagation between the neural network layers. Finally,
ground subsidence hazard mapping was carried out consider-
ing the factor weight derived from our study, and the analyt-
ical results were verified in a comparison with ground subsi-
dence locations. In this study, the GIS software ArcView 3.3
and ARC/INFO version 9.0 were used as the basic analysis
tools for spatial management and data processing.
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Fig. 5. The flow chart of neural network training for weight deter-
mination.

6 Landslide-susceptibility analysis using the artificial
neural network

Landslide-prone occurrences from the 61 sites and locations
without slide susceptibilities were selected as experiment
sites using slope map and landslide location data. To assess
the effect of the exercise site selection, they were identified
as areas where differing slope values with a 5 degree inter-
val were classified as “areas not prone to landslides”, and ar-
eas of landslides were assigned as “areas prone to landslides”
sets. If the analysis selected more than 61 sites with the same
value then the sites were chosen at random.

The back-propagation algorithm was applied to calculate
the weights between the input and hidden layers, and be-
tween the hidden and output layers, by modifying the num-
ber of hidden nodes and the learning rate. A three-layered
feed-forward network was established using the MATLAB
software package based on the framework provided by Hines
(1997) in which “feed-forward” denotes that the interconnec-
tions between the layers propagate forward to the next layer.

The number of hidden layers and the number of nodes in
such a layer required for a particular classification problem
are not easy to deduce. In this study, an 8×16×2 structure
was selected for the network with input data normalized in
the range 0.1–0.9. The nominal and interval class group data
were converted to continuous values ranging between 0.1 and
0.9. Continuous values were not, therefore, ordinal, but nom-
inal data, and the numbers denote the classification of the in-
put data. The learning rate was set to 0.01, and the initial
weights were randomly selected to values between 0.1 and
0.3.

The back-propagation algorithm was used to minimize the
error between the predicted and calculated output values.
The algorithm propagated the error backwards, and itera-
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Fig. 6. Backpropagataion training results.

Table 1. Weights of each factor for each selection of training site.

Factor Weight Normalized
Weight

Slope (unit: degree) 0.2003 2.300
Aspect 0.1302 1.495
Curvature (Unitless) 0.1088 1.249
Distance from Drainage (unit: m) 0.1031 1.184
Geology 0.1278 1.467
Distance from Fault (unit: m) 0.0871 1.000
Land Cover 0.1033 1.186
Terrain mapping unit 0.1395 1.602

tively adjusted the weights. The number of epochs was set
to 2000, and the root mean square error (RMSE) value used
for the stopping criterion was set to 0.1. The experimen-
tal data sets met the 0.1 RMSE goals in the case of 0 slope
(Fig. 6). If the RMSE value was not achieved however, then
the maximum number of iterations was terminated at 2000
epochs.

Figure 5 is the flowchart of the neural network exercise for
weight determination. The weights between layers that ac-
quired by using the neural network were calculated reversely
and the contribution or importance of each factor was de-
rived for each set in the exercise. With slope at 0, the fi-
nal weights of the 8 factors used to predict landslide sus-
ceptibility are shown in Table 1. For easy interpretation, the
weight values were normalized. Distance from a fault has the
minimum weight value of 1.00, and slope has the maximum
value of 2.30. Finally, the weights were applied across the
entire study area, and the landslide-susceptibility map was
then developed (Fig. 7). Susceptibility was classified into
four classes: highest 10%, second 10%, third 20% and re-
mainder 60%, based on area for easy visual interpretation.
The minimum value obtained was 0.0092 and 0.9971 was
the maximum. The mean value is 0.3784 and the standard
deviation 0.2534.
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Fig. 7. Landslide susceptibility mapping using artificial neural network. 
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Fig. 7. Landslide susceptibility mapping using artificial neural net-
work.

7 Verification

Two basic assumptions are required in the verification of
landslide-susceptibility calculation models. One is that land-
slides are related to spatial factors such as topography, ge-
ology and land cover, and the other is that future landslides
will be triggered by a specific impact such as seismic shock
or heavy rainfall (Brabb, 1984; Varnes, 1978). Both assump-
tions are satisfied in this study because the landslides were
related to spatial factors and were triggered by earthquake.

The susceptibility analysis result was verified using
known landslide locations compared with the landslide-
susceptibility map. Rate curves were created and areas under
the curve were calculated in each case. The rate illustrates
how well the model and factor predict landslide and, the area
under the curve enables an assessment of the prediction ac-
curacy qualitatively. To obtain the relative ranking for each
prediction pattern, the calculated index values of all cells in
the study area were sorted in descending order. The ordered
cell values were divided into 100 classes, with accumulated
1% intervals. In Fig. 8, for slope 0 the rate verification re-
sults appear as a line. However, the, 90 to 100% (10%) clas-
sification of the study area where the landslide-susceptibility
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Fig. 8. Illustration of cumulative frequency diagram showing landslide susceptibility index rank (x-

axis) occurring in cumulative percent of landslide occurrence (y-axis). 
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Fig. 8. Illustration of cumulative frequency diagram showing land-
slide susceptibility index rank (x-axis) occurring in cumulative per-
cent of landslide occurrence (y-axis).

index had a higher rank accounts for 75% of all the land-
slides. Furthermore, the 80 to 100% (20%) classification of
the study area predicts 92% of the landslides.

To compare the result quantitatively the areas under the
curve were recalculated with the total area as 1 which means
perfect prediction accuracy. Consequently, the area under a
curve can be used to assess the prediction accuracy qualita-
tively. In the case of slope 0, the area ratio was revealed as
0.9320 and we can say that the prediction accuracy is thus
93.20%.

To assess the effect of experiment site selection locations,
sites were chosen as areas where slope values with a 5◦ in-
terval were classified as prone or not prone to landslides. Af-
ter considering the slope, the verification showed that with a
slope increase, the accuracy decreased (Table 2). Above 36◦,
the prediction accuracy has a particularly low value. Because
landslide is notably related to slope, the designation of such
a test site as a “landslide not prone area” has an effect on the
accuracy of a landslide-susceptibility map.

The landslide-susceptibility map was also visually com-
pared with the ground acceleration map (Fig. 3). The land-
slide possibility and ground acceleration values are higher in
the south than elsewhere in the study area.

8 Discussion and conclusions

Landslides are among the most hazardous of natural disas-
ters. Government and research institutions worldwide have
attempted for years to assess landslide hazard and risk and
to show its spatial distribution. In this study, a data bank
approach by means of a GIS shows considerable promise
in the identification of areas susceptible to landslide caused
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Table 2. Verification result according to different training site se-
lection (different slope).

Slope value No. of Ratio No. of Ratio Frequency Area under
(degree) total cell (%) landslide (%) ratio curve

0 32234 10.83 0 0.00 0.00 93.20
1–5 29602 9.95 0 0.00 0.00 92.88
6–10 52925 17.78 1 1.64 0.09 93.11
11–15 64294 21.61 0 0.00 0.00 92.91
16–20 50089 16.83 1 1.64 0.10 93.21
21–25 32852 11.04 10 16.39 1.48 93.10
26–30 19084 6.41 14 22.95 3.58 91.88
31–35 9551 3.21 9 14.75 4.60 84.31
36–40 4036 1.36 7 11.48 8.46 17.62
41–45 1406 0.47 13 21.31 45.11 11.54
46–50 465 0.16 3 4.92 31.47 13.94
51–55 197 0.07 2 3.28 49.53 15.28
56–60 177 0.06 0 0.00 0.00 14.36
61–65 191 0.06 0 0.00 0.00 20.05
66–70 212 0.07 0 0.00 0.00 14.16
71–75 119 0.04 0 0.00 0.00 16.13
76–81 151 0.05 1 1.64 32.31 18.03
Total 297585 100.00 61 100.00 1.00

by earthquakes. In the verification of landslide-susceptibility
maps, the artificial neural network showed a very high pre-
diction accuracy of 93.20% in the case of 0 slope. The
landslide-susceptibility map was spatially consistent when
compared with the ground acceleration.

The back-propagation algorithm presented difficulties
when trying to follow the internal procedures. The method
involves a long execution time, has a heavy computing load,
and there is a requirement to convert the database to another
format. Landslide susceptibility can, however, be analyzed
qualitatively. In addition to using a multifaceted approach
to a solution, the extraction of reliable results for a complex
problem is possible with continuous and discrete data pro-
cessing.

These results can be used as basic data to assist slope
management and land-use planning. The models used in
the study are valid for generalized assessment purposes,
although they may be less useful at a site-specific scale
where local geological and geographic heterogeneities may
prevail.

Edited by: F. Guzzetti
Reviewed by: C. Gokceoglu and D. Keefer
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