Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
Volume 1, issue 1/2
Nat. Hazards Earth Syst. Sci., 1, 43–51, 2001
https://doi.org/10.5194/nhess-1-43-2001
© Author(s) 2001. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Double Issue: Seismic hazard evaluation - Part I

Nat. Hazards Earth Syst. Sci., 1, 43–51, 2001
https://doi.org/10.5194/nhess-1-43-2001
© Author(s) 2001. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  30 Jun 2001

30 Jun 2001

Electromagnetic-wave radiation due to diastrophism of magma dike growth in Izu-Miyake volcanic eruptions in Japan in 2000

M. Hata1, I. Takumi2, and H. Yasukawa1 M. Hata et al.
  • 1Aichi Prefectural University, Nagakute, Aichi 480-1198, Japan
  • 2Nagoya Institute of Technology, Nagoya 466-8555, Japan

Abstract. A large 10 cm per day diastrophism of the crust was experienced between Kozu and Niijima Islands during the Izu-Miyake volcanic eruptions in Japan on 3–4 August 2000. The diastrophism was detected through GPS observation. The seismometer also complied a swarm of earth-quakes at this time. Our electromagnetic wave data, observed at 223 Hz at the Omaezaki site, about 110 km and 150 km northwest of the Kozu and Miyake Islands, respectively, detected a clear, anomalous magnetic flux radiation that corresponded well with the seismographic and GPS data. Similar radiation was received for about one week preceding the big volcanic eruption that occurred on 18 August 2000. These observations indicate that the electromagnetic wave monitoring system has the potential to monitor and/or warn of volcanic activity, and the facts disclose one of the mysterious radiation mechanisms of electromagnetic waves emitted from the Earth.

Publications Copernicus
Download
Citation