Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 10, issue 10 | Copyright
Nat. Hazards Earth Syst. Sci., 10, 2109-2125, 2010
https://doi.org/10.5194/nhess-10-2109-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  08 Oct 2010

08 Oct 2010

Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast

S. T. Grilli1, S. Dubosq2, N. Pophet3,4, Y. Pérignon1,*, J. T. Kirby4, and F. Shi4 S. T. Grilli et al.
  • 1Department of Ocean Engineering, University of Rhode Island, Narragansett, RI 02882, USA
  • 2LSEET laboratory, University of Toulon, La Garde, CEDEX 83957, France
  • 3Advanced Virtual and Intelligent Computing Center, Chulalongkorn University, Thailand
  • 4Center for Applied Coastal Research, University of Delaware, Newark, DE 19716, USA
  • *now at: Ecole Centrale de Nantes, Nantes, France

Abstract. We perform numerical simulations of the coastal impact of large co-seismic tsunamis, initiated in the Puerto Rican trench, both in far-field areas along the upper US East coast (and other Caribbean islands), and in more detail in the near-field, along the Puerto Rico North Shore (PRNS). We first model a magnitude 9.1 extreme co-seismic source and then a smaller 8.7 magnitude source, which approximately correspond to 600 and 200 year return periods, respectively. In both cases, tsunami generation and propagation (both near- and far-field) are first performed in a coarse 2′ basin scale grid, with ETOPO2 bathymetry, using a fully nonlinear and dispersive long wave tsunami model (FUNWAVE). Coastal runup and inundation are then simulated for two selected areas, using finer coastal nested grids. Thus, a 15″ (450 m) grid is used to calculate detailed far-field impact along the US East Coast, from New Jersey to Maine, and a 3″ (90 m) grid (for the finest resolution), encompassing the entire PRNS, is used to compute detailed near-field impact along the PRNS (runup and inundation). To perform coastal simulations in nested grids, accurate bathymetry/topography databases are constructed by combining ETOPO2 2′ data (in deep water) and USGS' or NOAA's 15″ or 3″ (in shallow water) data. In the far-field, runup caused by the extreme 9.1 source would be severe (over 10 m) for some nearby Caribbean islands, but would only reach up to 3 m along the selected section of the East coast. A sensitivity analysis to the bathymetric resolution (for a constant 3″ model grid) of runup along the PRNS, confirms the convergence of runup results for a topographic resolution 24″ or better, and thus stresses the importance of using sufficiently resolved bathymetric data, in order to accurately predict extreme runup values, particularly when bathymetric focusing is significant. Runup (10–22 m) and inundation are found to be very large at most locations for the extreme 9.1 source. Both simulated spatial inundation snapshots and time series indicate, the inundation would be particularly severe near and around the low-lying city of San Juan. For the 8.7 source, runup along the PRNS would be much less severe (3–6 m), but still significant, while inundation would only be significant near and around San Juan. This first-order tsunami hazard analysis stresses the importance of conducting more detailed and comprehensive studies, particularly of tsunami hazard along the PRNS, for a more complete and realistic selection of sources; such work is ongoing as part of a US funded (NTHMP) tsunami inundation mapping effort in Puerto Rico.

Publications Copernicus
Download
Citation
Share