Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
Volume 11, issue 11
Nat. Hazards Earth Syst. Sci., 11, 2941–2949, 2011
https://doi.org/10.5194/nhess-11-2941-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Progress in research on earthquake precursors

Nat. Hazards Earth Syst. Sci., 11, 2941–2949, 2011
https://doi.org/10.5194/nhess-11-2941-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Nov 2011

Research article | 04 Nov 2011

Rethinking earthquake-related DC-ULF electromagnetic phenomena: towards a physics-based approach

Q. Huang1,2 Q. Huang
  • 1Department of Geophysics, School of Earth and Space Sciences, Peking University, Beijing 100871, China
  • 2The Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Beijing 100871, China

Abstract. Numerous electromagnetic changes possibly related with earthquakes have been independently reported and have even been attempted to apply to short-term prediction of earthquakes. However, there are active debates on the above issue because the seismogenic process is rather complicated and the studies have been mainly empirical (i.e. a kind of experience-based approach). Thus, a physics-based study would be helpful for understanding earthquake-related electromagnetic phenomena and strengthening their applications. As a potential physics-based approach, I present an integrated research scheme, taking into account the interaction among observation, methodology, and physical model. For simplicity, this work focuses only on the earthquake-related DC-ULF electromagnetic phenomena. The main approach includes the following key problems: (1) how to perform a reliable and appropriate observation with some clear physical quantities; (2) how to develop a robust methodology to reveal weak earthquake-related electromagnetic signals from noisy background; and (3) how to develop plausible physical models based on theoretical analyses and/or laboratory experiments for the explanation of the earthquake-related electromagnetic signals observed in the field conditions.

Publications Copernicus
Download
Citation