Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
Volume 11, issue 2
Nat. Hazards Earth Syst. Sci., 11, 401–418, 2011
https://doi.org/10.5194/nhess-11-401-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Applying ensemble climate change projections for assessing...

Nat. Hazards Earth Syst. Sci., 11, 401–418, 2011
https://doi.org/10.5194/nhess-11-401-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

  10 Feb 2011

10 Feb 2011

Ensemble analysis of frost damage on vegetation caused by spring backlashes in a warmer Europe

A. M. Jönsson1 and L. Bärring2 A. M. Jönsson and L. Bärring
  • 1Department of Physical Geography and Ecosystems Analysis, Geobiosphere Science Centre, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
  • 2Rossby Centre, Swedish Meteorological and Hydrological Institute, 601 76, Norrköping, Sweden

Abstract. Tree dehardening and budburst will occur earlier in a warmer climate, and this could lead to an increased risk of frost damage caused by temperature backlashes. By using a spring backlash index and a cold hardiness model, we assessed different aspects of risk for frost damage in Norway spruce forests during the present climate and for one future emission scenario. Uncertainties associated with climate modelling were quantified by using temperature data from three climate data sets: (1) E-Obs gridded observed climate data, (2) an ensemble of data from eight regional climate models (RCM) forced by ERA-40 reanalysis data, (3) an ensemble of regional climate scenarios produced by the regional climate model RCA3 driven at the boundary conditions by seven global climate models (GCM), all representing the SRES A1B emission scenario.

The frost risk was analysed for three periods, 1961–1990, 2011–2040 and 2070–2097. The RCA3_GCM ensemble indicated that the risk for spring frost damage may increase in the boreo-nemoral forest zone of southern Scandinavia and the Baltic states/Belarus. This is due to an increased frequency of backlashes, lower freezing temperatures after the onset of the vegetation period and the last spring frost occurring when the trees are closer to budburst. The changes could be transient due to the fine balance between an increased risk of frost damage caused by dehardening during a period when freezing temperatures are common and a decreased risk caused by warmer temperatures. In the nemoral zone, the zone with highest risk for spring backlashes during the reference period (1961–1990), the spring frost severity may increase due to frost events occurring when the trees are closer to budburst. However, the risk in terms of frequency of backlashes and freezing temperature were projected to become lower already in the beginning of this century.

Publications Copernicus
Download
Citation