Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
Volume 13, issue 4
Nat. Hazards Earth Syst. Sci., 13, 1051–1062, 2013
https://doi.org/10.5194/nhess-13-1051-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: 13th Plinius Conference on Mediterranean Storms: disasters...

Nat. Hazards Earth Syst. Sci., 13, 1051–1062, 2013
https://doi.org/10.5194/nhess-13-1051-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Apr 2013

Research article | 19 Apr 2013

Effects of temperature on flood forecasting: analysis of an operative case study in Alpine basins

A. Ceppi1, G. Ravazzani1, A. Salandin2, D. Rabuffetti2, A. Montani3, E. Borgonovo4, and M. Mancini1 A. Ceppi et al.
  • 1Politecnico di Milano – D.I.C.A., Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
  • 2A.R.P.A. Piemonte – Via Pio VII 9, 10135 Turin, Italy
  • 3ARPA-SIMC (HydroMeteoClimate Regional Service of Emilia-Romagna), Viale Silvani 6, 40122 Bologna, Italy
  • 4ELEUSI Research Center Department of Decision Sciences, Bocconi University, Viale Isonzo 25, 20135 Milan, Italy

Abstract. In recent years the interest in the forecast and prevention of natural hazards related to hydro-meteorological events has increased the challenge for numerical weather modelling, in particular for limited area models, to improve the quantitative precipitation forecasts (QPF) for hydrological purposes.

After the encouraging results obtained in the MAP D-PHASE Project, we decided to devote further analyses to show recent improvements in the operational use of hydro-meteorological chains, and above all to better investigate the key role played by temperature during snowy precipitation.

In this study we present a reanalysis simulation of one meteorological event, which occurred in November 2008 in the Piedmont Region. The attention is focused on the key role of air temperature, which is a crucial feature in determining the partitioning of precipitation in solid and liquid phase, influencing the quantitative discharge forecast (QDF) into the Alpine region. This is linked to the basin ipsographic curve and therefore by the total contributing area related to the snow line of the event.

In order to assess hydrological predictions affected by meteorological forcing, a sensitivity analysis of the model output was carried out to evaluate different simulation scenarios, considering the forecast effects which can radically modify the discharge forecast.

Results show how in real-time systems hydrological forecasters have to consider also the temperature uncertainty in forecasts in order to better understand the snow dynamics and its effect on runoff during a meteorological warning with a crucial snow line over the basin.

The hydrological ensemble forecasts are based on the 16 members of the meteorological ensemble system COSMO-LEPS (developed by ARPA-SIMC) based on the non-hydrostatic model COSMO, while the hydrological model used to generate the runoff simulations is the rainfall–runoff distributed FEST-WB model, developed at Politecnico di Milano.

Publications Copernicus
Download
Citation