
Nat. Hazards Earth Syst. Sci., 13, 3339–3355, 2013
www.nat-hazards-earth-syst-sci.net/13/3339/2013/
doi:10.5194/nhess-13-3339-2013
© Author(s) 2013. CC Attribution 3.0 License.

Natural Hazards 
and Earth System 

Sciences
O

pen A
ccess

Assessing the spatial variability of coefficients of landslide
predictors in different regions of Romania using logistic regression
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Abstract. In landslide susceptibility assessment, an impor-
tant issue is the correct identification of significant contribut-
ing factors, which leads to the improvement of predictions
regarding this type of geomorphologic processes. In the sci-
entific literature, different weightings are assigned to these
factors, but contain large variations. This study aims to iden-
tify the spatial variability and range of variation for the coef-
ficients of landslide predictors in different geographical con-
ditions. Four sectors of 15 km× 15 km (225 km2) were se-
lected for analysis from representative regions in Romania in
terms of spatial extent of landslides, situated both on the hilly
areas (the Transylvanian Plateau and Moldavian Plateau) and
lower mountain region (Subcarpathians). The following fac-
tors were taken into consideration: elevation, slope angle,
slope height, terrain curvature (mean, plan and profile), dis-
tance from drainage network, slope aspect, land use, and
lithology. For each sector, landslide inventory, digital ele-
vation model and thematic layers of the mentioned predic-
tors were achieved and integrated in a georeferenced envi-
ronment. The logistic regression was applied separately for
the four study sectors as the statistical method for assessing
terrain landsliding susceptibility. Maps of landslide suscepti-
bility were produced, the values of which were classified by
using the natural breaks method (Jenks). The accuracy of the
logistic regression outcomes was evaluated using the ROC
(receiver operating characteristic) curve and AUC (area un-
der the curve) parameter, which show values between 0.852
and 0.922 for training samples, and between 0.851 and 0.940
for validation samples. The values of coefficients are gen-
erally confined within the limits specified by the scientific
literature. In each sector, landslide susceptibility is essen-
tially related to some specific predictors, such as the slope

angle, land use, slope height, and lithology. The study points
out that the coefficients assigned to the landslide predictors
through logistic regression are capable to reveal some im-
portant characteristics in landslide manifestation. The study
also shows that the logistic regression could be an alternative
method to the current Romanian methodology for landslide
susceptibility and hazard mapping.

1 Introduction

Landslides are widespread gravitational processes, con-
trolled by various factors related to geology, geomorphology,
hydrology, climate and land use, all of them having a signifi-
cant potential impact on the environment and human society.
Generally, they are defined as down slope movements of rock
mass, debris, or earth under the direct influence of gravity
(Cruden, 1991).

As in the case of any type of risk phenomena, the analysis
of landslide risk assumes the use of “observations about what
we know to make predictions about what we don’t know”
(Paustenbach, 2002). For landslide risk evaluation, recent
studies take into account several components such as land-
slide susceptibility, landslide hazard, landslide vulnerability
and consequently, the elements at risk.

Landslide susceptibility is defined as the spatial occur-
rence probability of landslides. Compared to the other com-
ponents of landslide risk, it can be modelled with a relatively
high degree of accuracy. The assessment of different proba-
bility degrees is based on the assumption that slope failures
in the future will be more likely to occur under the conditions
that led to past and present slope movements (Varnes, 1984;
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Carrara et al., 1995; Guzzetti et al., 1999; Ercanoglu, 2008).
Because the temporal factor is not taken into account (Dai
and Lee, 2002; Zêzere et al., 2002), landslide susceptibility
relies on a rather complex knowledge of slope movements
and their controlling factors (Ayalew and Yamaghishi, 2005).
The manner in which these conditions combine themselves
spatially and temporally, leading to landslide manifestations,
is still in an early stage of exploration.

Landslide susceptibility assessment can be approached by
means of qualitative or heuristic methods (which are par-
tially subjective and essentially based on expert knowledge),
quantitative methods (based on numerical expressions of the
relations between controlling factors and landslide activi-
ties), or combinations of qualitative and quantitative (hybrid)
methods. The quantitative methods have developed rapidly
during the last two decades due to the growing accessibil-
ity of geoinformation tools, including geographic informa-
tion systems (GIS), remote sensing, digital photogramme-
try, and global positioning systems (van Westen et al., 2008;
Guzzetti et al., 2012). The application of statistical tools and
new research techniques facilitate a fast and accurate com-
putation and give more insights into the landsliding process,
including its mapping (Guzzetti et al., 1999; van Westen et
al., 2006). Statistical methods include bivariate analysis, like
weights of evidence (WOE), which approaches the relations
between the controlling factors individually (Thiery et al.,
2007), and multivariate analysis, which evaluates the relative
importance of each instability factor with respect to the oth-
ers, allowing a better understanding of the interrelationships
between the controlling factors (Falaschi et al., 2009).

One of the most popular statistical methods used for land-
slide susceptibility assessment is the binary logistic regres-
sion (BLR), with numerous applications for this purpose, es-
pecially at regional scales (Süzen and Doyuran, 2004; Zhu
and Huang, 2006; Mathew et al., 2009; Bai et al., 2010, 2011;
Rossi et al., 2010; Van Den Eeckhaut et al., 2010; Atkin-
son and Massari, 2011; Ercanoglu and Temiz, 2011; Akgun,
2012). The main advantage of this method is its capability
to eliminate unrelated causative factors and evaluate the sig-
nificance of the related ones (Yesilnacar and Topal, 2005;
Falaschi et al., 2009; Chauhan et al., 2010; Ghosh et al.,
2011).

The identification and selection of the predictors plays an
essential role in landslide susceptibility assessment (Aleotti
and Chowdury, 1999). However, the selection of parameters
is far from being “standardized”. It usually depends on ex-
pert knowledge, size of the area, time, scale, landslide types,
methodology to be applied, budget, data availability and re-
liability (Glade and Crozier, 2005). BLR provides, as well
as other multivariate methods, numerical weights for the pre-
dictors, as expressions of the degree in which their spatial
combinations influence landslide manifestations.

In Romania, prior to the year 2000, the assessment of land-
slide susceptibility and hazard was based on geomorpholog-
ical mapping and expert knowledge (Bălteanu et al., 1994;

Constantin, 2008). Starting from 2003, a semi-quantitative
approach has been implemented at a national level, includ-
ing standards for landslide hazard mapping (Romanian Gov-
ernment Decision no. 477/2003). This approach assigns the
same weight to a number of eight factors, regardless of their
position inside the various geomorphological units from Ro-
mania. In recent years there have been several contributions
concerning landslide susceptibility mapping such as those
that exploit statistical bivariate methods (Armaş, 2011; Con-
stantin, 2011), multivariate methods (Micu and Bălteanu,
2009; B̆alteanu et al., 2010; Şandric et al., 2011; Mărğarint et
al., 2011; Armaş, 2012; Grozavu et al., 2012) and geotechni-
cal based approaches (Nicorici et al., 2012).

The present study employs the BLR method in order to
achieve an accurate image concerning the spatial variability
and range of variation of coefficients of landslide predictors
and to evaluate the landslide susceptibility in different geo-
graphical areas, using the same predictors. For this purpose,
four sectors were chosen belonging to different geographical
regions from Romania, located both in hilly areas (Transyl-
vanian Plateau, Moldavian Plateau) and in lower mountain
region (Subcarpathians). In all these sectors, the landslides,
either old or recent, have important extents, constituting the
main land degradation form.

2 Study areas

As previously mentioned, four sectors were selected for
analysis, namely C̆apuşu de Câmpie, Şipote, Lungani and
Helegiu, located in representative regions of Romania in
terms of spatial extent of landslides (Fig. 1). Each sector has
a square shape with sides of 15 km (225 km2), correspond-
ing to the rectangular grid of the Romanian 1: 25000 topo-
graphic map. Two of them – C̆apuşu de Câmpie and Lungani
– have already been subject to landslide susceptibility evalu-
ation within a previous study (M̆arğarint et al., 2011).

2.1 Căpuşu de Câmpie sector

The C̆apuşu de Câmpie sector is located in the central part
of the country, within the Transylvanian Depression, on the
Comlod Basin (right-side tributary of Mureş River). This sec-
tor is developed on a series of saliferous domes and brachy-
anticlines with mean flank slopes of 3–6◦ (Irimuş, 1998). The
lithology is represented by Neogene deposits, including clays
and marls with sand intercalations, incorporating loose sand-
stones and volcanic tuffs. In the south-western part of the
sector, there are more recent deposits of Pannonian age, rep-
resented by clays with sand intercalations. From a morpho-
logic perspective, the Comlod Valley and its tributaries cut
into a hilly area with broad interfluves and various slopes.
The altitude varies between 283 and 572 m a.s.l., the relief
energy is below 150 m and the density of relief fragmentation
reaches 1.0–1.2 km km−2. From the climatic perspective the
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Fig. 1.Location of study areas, with landslide distribution (in orange), and active landslides (in red) overlaid on terrain hillshade.

mean annual temperature is 8.5–9◦C, and the mean annual
precipitations are around 600–630 mm yr−1, their monthly
distribution presenting a peak within the April–July period.
The agricultural lands dominate the sector (about 90 % of the
total surface), the proportion of arable lands reaching 70 %.

Landslides are the dominant slope modelling processes,
affecting important slope areas. Generally, they are shallow
landslides, with deluvial depths between 2 and 5 m, and sur-
faces between 0.1 and 20 ha. Deep seated landslides are also
present, which is typical for the Transylvanian Depression,
locally namedglimee(Morariu & Gârbacea, 1968; Surdeanu
et al., 2011). These are large rotational landslides, with thick-
ness normally of more than 30 m, showing usually steps-like
and hummocky morphology (Fig. 2). Theglimee’s distribu-
tion within the Transylvanian Depression denotes a causal re-
lationship between their occurrence and particular structural-
lithologic patterns such as the inclined position of geologic
strata (in monoclinal or slightly folded deposits such as those
found in domes and anticlinal folds); the presence of alter-
nate permeable and impermeable deposits; and considerable
thickness of permeable strata (usually sand and gravels). Ba-
sically, the development mechanism of this type of landslide
could be explained by the occurrence of a deep landslide
in the upper part of the slope, followed by the successive
retreat of the scarp. This generates the detachment of new

masses and the pushing of deluvial deposits towards the base
of the slope. Old step-like detached masses evolve through
erosion and shallow landslides, becoming more and more
fragmented, while the frontal part receives a gentle undu-
lating shape (Fig. 2). Generally, it is accepted that the de-
velopment ofglimee was favoured by climatic conditions
from late Pleistocene – early Holocene (Preboreal and Boreal
ages). Nevertheless, the exceptional precipitation amounts,
recorded for instance in 1970 and 1975, proved that these
landslides continue to evolve under the present climatic con-
ditions, as numerous reactivations were recorded. Without a
doubt, a slope affected byglimeecontinues to evolve nowa-
days, through the formation of new scarps, new landslide
bodies overlaying the old ones (Surdeanu et al., 2011).

2.2 Şipote and Lungani sectors

Şipote and Lungani sectors are located in north-eastern Ro-
mania, in the central part of the Moldavian Plateau, belong-
ing to the extensive east European geostructural platform.
The lithology presents monoclinic structure with an inclina-
tion of 4–8 m km−1 along the NNW–SSE direction (Ionesi,
1994), comprising alternating Neogene rocks: marls, clays,
sandstone and sand complexes. Morphologically, the Şipote
sector is represented by a succession of large interfluves
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Fig. 2.Deep-seated landslide (glimee) in the Transylvanian Plateau (Căpuşu de Câmpie sector) and associated block diagram.

separated by valleys, while the Lungani sector occupies a
part of the Bahluiet floodplain and its right-side cuesta scarp.
The altitudes vary between 45 and 218 m a.s.l. for the Şipote
sector, and between 50 and 212 m a.s.l. for the Lungani sec-
tor. The relief energy reaches 80–120 m (for the Şipote sec-
tor) and 60–100 m (for the Lungani sector), while the re-
lief fragmentation presents, for both sectors, similar values
to those from the C̆apuşu de Câmpie sector. The mean an-
nual precipitations are around 530–560 mm yr−1, being un-
evenly distributed within the year (more than half of the an-
nual quantity falls from May to August).

These natural characteristics, along with the land use dy-
namics (deforestations, crops cultivated on slopes, dense net-
work of ponds) and the extent of roads and settlements, have
overall influenced the stability of the slopes (Mărğarint et
al., 2010). Important slope areas, mostly the cuesta escarp-
ments, are affected by translational landslides, with thick-
ness between 3 and 5 m and also rotational landslides with
thickness greater than 5 m (Fig. 3). A particular type of slope
morphology, known ashârtoape, resembles an amphitheatre,
being located on the slopes or at the origin of torrential val-
leys (Fig. 4). This morphology is characteristic for an impor-
tant part of the Moldavian Plateau.Hârtoapeevolution was
done over a long time with the participation of complex ge-
omorphological processes, especially landslides and erosion
processes. Significant parts within this morphology are asso-

ciated with old, dormant, landslides which have thicknesses
of 10–20 m, but are in turn affected by recent processes, such
as shallow landslides (Fig. 5), slumps and surface erosion.

2.3 Helegiu sector

The Helegiu sector is located in the Moldavian Subcarpathi-
ans, which constitute a complex structural unit bordering
the Carpathian Mountains. Characteristic are the Paleogene
and Neogene deposits with frequent deep and shallow alter-
nance of various lithology such as clays, marl-clays, sand-
stones, sands, gravel, loams, volcanic tuffs, gypsum, etc.
The geological structure (tectonic nappes) and the diverse
lithology have conditioned the formation of a fragmented
relief on the Tazl̆au Valley and its tributaries. The altitudes
vary between 194 and 979 m a.s.l., the relief energy is 200–
280 m, and the density of relief fragmentation reaches 1.5–
2.0 km km−2. The mean annual precipitations vary around
530–670 mm yr−1, heavy rainfalls being characteristic. All
these are conditions that favour mass movement processes
like collapse, slump and, especially, landslides which of-
ten put their mark on the landscape, with different ages,
morphologies and intensities. Often, when favourable con-
ditions are met, the old slope deposits, with average thick-
ness of 3–5 m in relative equilibrium to the substrate, can
be reactivated or can support active sliding. Slope mod-
elling processes of this sector could be linked with an intense
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Fig. 3. Deep seated landslide in the Moldavian Plateau (Şipote sec-
tor).

hydrographical activity of the Tazlău River and its tributaries,
and also with deforestations during the last two centuries.
In this period, the forest surface decreased by half, some-
times even more, especially around villages, being replaced
by secondary meadows, orchards, or by the extension of set-
tlements (Ungureanu, 1993). Also, after social and economic
transformations in 1989, important deforestations have been
produced as a result of changes in property status.

3 Methodology

In order to fulfil the purpose of the present study we chose the
BLR method. For modelling terrain landsliding susceptibil-
ity we created a spatial database (landslide inventory, digital
elevation model (DEM), and thematic layers of the predic-
tors considered to be potential factors for landslide occur-
rence for each of the four study sectors) and integrated it in
a georeferenced environment. For the evaluation of the ac-
curacy of BLR outcomes we used the classification accuracy
tables, the receiver operating characteristic (ROC) curve and
the area under the curve (AUC) parameter.

3.1 The logistic regression method

The BLR method belongs to the group called the gener-
alized linear models (GLM). The natural logarithm of the
odds ratio, that is the ratio between the probability for an
event to occur and the probability for an event not to oc-
cur, ln[P/(1− P)], is called logit. If this quantity can be ex-
pressed as a linear combination of predictors (x), then the
probability for an event to occur can be further derived:

P = 1/(1+ e−x). (1)

In this manner, the probability of an event (landslide) to
occur is linked to a linear combination of predictors through
a logistic function. The regression coefficients are com-
puted using the maximum likelihood estimation (Süzen and

Fig. 4.Semicircular depression shaped by complex geomorpholog-
ical processes (hârtop in the Moldavian Plateau, Şipote sector).

Doyuran, 2004; Bai et al., 2010). Compared to linear regres-
sion, there is no unique solution for logistic regression co-
efficients. That is why the maximum likelihood estimation
follows an iterative algorithm. Though the regression coeffi-
cients are not readily interpretable, one can use the standard-
ized coefficients to assess the relative importance of predic-
tors.

3.2 Data

The necessary data for landslide susceptibility computation
were acquired from cartographic and aerial photographic ma-
terials, the primary basis for spatial data acquisition being the
1 : 25000 Romanian topographic map, with Gauss–Krüger
transversal polycylindric projection, printed in 1984.

In a first stage, the landslide inventories were created for
all sectors, based on interpretation of the 2006 orthopho-
tos with a spatial resolution of 0.5 m, which were further
checked and validated by field campaigns. The inventory has
considered only areas with obvious manifestation of sliding
processes. The old, relict, large landslides sites (glimeeand
hârtoape) were not entirely included in the landslide inven-
tory and, consequently, in the regression equation, but only
those surfaces within them which present a distinctive land-
sliding morphology, and clearly defined boundaries (Atkin-
son and Massari, 1998; Ohlmacher and Davis, 2003). The
overall landslide inventory summarizes 528 landslides for the
Căpuşu de Câmpie sector, 284 for the Şipote sector, 286 for
the Lungani sector and 851 for the Helegiu sector (Fig. 1).
Table 1 presents the landslide synthetically for the four con-
sidered study areas: number of polygons, and the landslide
surface considering the activity status (average, minimum
and maximum surfaces). The second column (number of
polygons) shows the landslides inventoried for this study. Ta-
ble 2 shows the types of landslides, which have been classi-
fied into two main categories: shallow landslides, which are
translational, the depth of which does not exceed 5 m; and
deep seated landslides with depths exceeding 5 m, generally
characterized also by rotational movements. Where the land-
slides spread over large areas and a clear differentiation of
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Table 1.Landslide characteristics for the study sectors.

Sector Landslides - total Active landslides

No. of Sample size in Area (ha) % from No. of Area (ha) % from

polygons depletion areas Med. Min. Max. total area polygons Med. Min. Max. total area

Căpuşu de Câmpie 528 845 4.41 0.01 76.88 10.34 272 2.21 0.08 26.97 2.67
Şipote 284 782 9.69 0.06 561.90 12.22 143 4.97 0.16 45.45 3.16
Lungani 286 801 14,55 0.01 232.38 18.49 159 4.50 0.19 40.23 3.18
Helegiu 851 1027 2.10 0.01 118.06 10.10 197 1.51 0.05 33.42 1.33

Table 2.Landslide types for the study sectors.

Sector Shallow landslides Deep seated landslides Complex landslides

No. of Mean Total No. of Mean Total No. of Mean Total
polygons area (ha) area (ha) polygons area (ha) area (ha) polygons area (ha) area (ha)

Căpuşu de Câmpie 409 1.88 769.96 93 11.09 1031.27 14 36.84 515.81
Şipote 215 3.52 755.96 64 18.44 1180.33 5 162.72 813.59
Lungani 206 8.17 1682.31 71 25.98 1844.66 7 90.64 634.44
Helegiu 712 1.38 980.13 126 7.63 962.42 9 58.95 530.58

the two subtypes was not possible, we chose to introduce a
third class of complex landslides.

Next, starting from the digitized elevation isolines, the
DEM of each sector was computed at a spatial resolution
of 20 m× 20 m. The DEMs were further used to derive the
thematic layers representing a part of the predictors required
in the analysis. The geomorphometrical predictors (contin-
uous variables), such as elevation, slope angle, mean cur-
vature, plan curvature, profile curvature, and distance from
drainage network were computed using ArcGIS 9.3 software,
while slope height, representing the altitudes above river
channels, was derived in SAGA-GIS 2.0.8 software. We also
computed three categorical predictors (categorical variables)
such as slope aspect, land use, and lithology. The slope aspect
was computed using ArcGIS 9.3 software, its values being
grouped into four classes (north, east, south, and west). The
land use layer was created by vectorization and classification
of land use polygons on the basis of high resolution 2006 or-
thophotos, which were georeferenced using the 1: 5000 to-
pographic maps. The following land use categories were de-
picted by photo interpretation and named according to Roma-
nian cadastral terminology: arable, pastures, arable and pas-
tures, forest, water, built areas, and unproductive land (which
refers to the excessive degraded areas that are virtually de-
void of vegetation like gullies, ravines, streams, boulders,
rocks, etc.). Finally, the predictor lithology was acquired
from the geological map of Romania at scale 1: 200000, be-
cause sources that are more detailed were not available for
this parameter. At this scale, only the Helegiu mountainous
sector reveals a high geological complexity.

3.3 The modelling strategy

For modelling the landslide susceptibility the integration of
predictors (both continuous and categorical ones) must be
done in the logistic regression model. As for the categorical
variables, they can be integrated in two ways: one approach
is to express the classes of each categorical parameter as
dummy variables (Guzzetti et al., 1999; Dai and Lee, 2002;
Ohlmacher and Davis, 2003; Nefeslioglu et al., 2008); the
other approach is to compute landslide densities for categor-
ical parameters and use them as predictors (Zhu and Huang,
2006; Yilmaz, 2009). The present study exploits the latter ap-
proach in order to avoid the creation of an excessively high
number of dummy variables. Consequently, landslide densi-
ties were computed for slope aspect, land use and lithology,
according to the following formula (Bai et al., 2010):

LDi =
(LA i/Ai)

(LA/A)
, (2)

where LDi is the landslide density value for classi, LA i and
Ai are the landslide area in classi and the total area of class
I, respectively, and LA and A are the total landslide area in
the study region and the total area of the study region, respec-
tively. In order to achieve the landslide density raster layers,
the zonal histogram procedure from the ArcGIS 9.3 Spatial
Analyst extension was employed using the landslide poly-
gons as the zone data set. The results were exported and pro-
cessed in Excel software in order to obtain the landslide den-
sity values for each class. These values were then recorded
into the attribute tables of the categorical factors, which were
further converted into raster layers.
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Fig. 5.Shallow landslide in the Şipote sector, detail from Fig. 4.

Because a certain amount of redundancy is present among
the considered predictors, a selection procedure must be ap-
plied. In the present study, the XLSTAT 2010 trial version
software was used to apply the logistic regression and the se-
lection of the relevant predictors was performed by the step-
wise (forward) procedure implemented into the logistic re-
gression module. This procedure adds the variables one by
one, checking at each step if the contribution of the new vari-
able, assessed through the Wald chi-square test, is statisti-
cally significant. After the third variable is added, the pro-
cedure checks if removing any of the variables improves the
model. We used this procedure in order to avoid the multi-
collinearity problem.

It is generally acknowledged that the application of lo-
gistic regression requires fairly equal number of presences
(1) and absences (0) in the input data set (Nefeslioglu et al.,
2008; Bai et al., 2010; Ayalew and Yamagishi, 2005; García-
Rodríguez et al., 2008; Gorum et al., 2008). In the present
study, the depletion areas of each landslide were semi-
automatically identified and mapped by using a geomorpho-
metrical parameter called mass balance index (Hensel and
Bork, 1988; Böhner and Selige, 2006). This parameter was
derived in SAGA-GIS using the DEM and vertical distance
to channel network as input layers. As the mass balance in-
dex has higher values on steep slopes and exposed convex up-
per slope positions, it can be used to map landslide depletion
areas. It was found that values greater than 0.1 correspond
largely to these areas. Grid points were then generated in the
areas with mass balance index values greater than 0.1 and in-
side landslide polygons. Finally, the resulting point sample
was visually inspected and corrected when necessary. These
samples contain about 800–1000 points, the number being
specified in Table 1. Small landslides often received a single
point in the depletion zone, while larger landslides received
several points. After the depletion areas were sampled, we
generated random samples of similar sizes outside the de-
pletion areas and outside landslide polygons. A part of the

Fig. 6. The mass balance index used for sampling the landslide de-
pletion areas (detail of the Lungani sector).

Lungani sector is shown in Fig. 6 as an example for this pro-
cedure.

For susceptibility modelling we used 80 % of the landslide
and non-landslide points, representing the training samples.
Consequently, 20 % of the samples, randomly selected, were
used as independent data sets for validation and for testing
the predictive potential of the models.

Next, we obtained continuous susceptibility values (from
0 to 1), which we classified thereafter into five classes. This
is an important issue and as far as we know there is no agree-
ment concerning the best approach. There are several possi-
ble approaches to achieve this: equal intervals, standard de-
viation based separations, natural breaks method, quantiles,
etc. The use of equal intervals has the disadvantage of em-
phasizing one class relative to others (Ayalew and Yamag-
ishi, 2005). Some authors recommend the standard devia-
tion approach as the best choice for class separation (Ayalew
and Yamagishi, 2005). The natural breaks algorithm (Jenks,
1977) performs the classification by grouping similar values
while maximizing the differences between classes. It gives
good results when the landslide susceptibility index (LSI)
histogram shows evident breaks. This method was preferred
here, so we separated five landslide susceptibility classes:
very low, low, medium, high and very high (Table 5).
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Finally, we tested the quality of the logistic regression
model. Although other procedures exist, such as the likeli-
hood ratio, or the pseudocoefficients of determination (e.g.
McFadden, 1973; Cox and Snell, 1989; Nagelkerke, 1991),
we used for validation the classification accuracy tables and
the ROC methodology for both training and test samples. Ap-
plied in various fields, such as medicine, meteorology, etc.,
including geomorphology and particularly landslide suscep-
tibility assessment (Chauhan et al., 2010; Mancini et al.,
2010; Guns and Vanacker, 2012), the ROC curve is a use-
ful tool for assessing the accuracy of predictions issued by a
binary classifier system. It represents a graphical plot of true
positive rate (known also as sensitivity) and false positive rate
(known also as 1-specificity).

In the context of the current research, the BLR classi-
fies the points as belonging to landslide depletion areas if
the probability value is greater than the specified threshold
(0.5). Otherwise, they are classified as non-landslide deple-
tion points. The group of points representing landslide de-
pletion areas is the “positive” group, while the other points
represent the “negative” group. A true positive prediction is
therefore the correct assignment of a point to the landslide
depletion area group. A false positive prediction is the wrong
assignment of a point to this group. A correct assignment to
the non-landslide depletion group is called true negative or
sensitivity. The number of false positive predictions is equal
with 1 minus the number of true negatives. Plotting the frac-
tion of true positives out of the positives (true positive rate)
against the fraction of false positives out of the negatives
(false positive rate) for all possible values of the threshold
parameter (from 0 to 1), results in the ROC curve. The point
(0,1), corresponding to the upper left of the plot represents
the perfect classification, when all points are correctly clas-
sified.

The AUC is an indicator of the model quality, seen as
one of the most useful tools for evaluating the BLR model
fit (Gorsevski et al., 2006). For a perfect classification, the
AUC is 1. For a random model, the AUC is 0.5. Generally,
a good model must have an AUC value greater than 0.7 and
an excellent model an AUC value greater than 0.9 (XLSTAT
tutorial).

4 Results

Landslide densities were computed for slope aspect classes,
land use, and lithology (Table 3), the values of which were
further used in logistic regression analysis. Within the slope
aspect classes, the analysis of landslide density reveals the
fact that the highest values correspond to the western and
northern slopes, where the surface deposits keep a high de-
gree of humidity. In the case of the Căpuşu de Câmpie sector,
the hierarchy is changed, where the highest values belong
to the southern class. Considering the land use, the highest
densities belong to the degraded land class (the landslides

themselves contributing to the individualization of this spe-
cific class). The following classes are pastures and forest (for
Căpuşu de Câmpie, Şipote and Lungani sectors), an issue that
will be discussed below. Considering the lithology, the high-
est values belong to marls and clays, especially when they
are mixed with sands and sandstones (the sectors within the
plateau units) or with calcareous sandstones and conglomer-
ates (Helegiu sector). Consequently, the lowest values are as-
sociated to the Quaternary deposits regardless of their granu-
lometry (these deposits occupy almost entirely all the alluvial
plains and fluvial terraces).

Through the stepwise filtering procedure of logistic regres-
sion method, the relevant predictors for landslide suscepti-
bility assessment were selected for each of the four analysed
sectors. The logistic regression coefficients are shown in Ta-
ble 4, the predictors being arranged in order of decreasing
importance according to the standardized coefficient values.
The graphic representations of the standardized coefficients’
values are presented in Fig. 7. They prove to be useful for
better understanding the relations between the spatial distri-
bution of landslide susceptibility classes and the influence of
each factor in landsliding.

Though this procedure aims to avoid the multicollinear-
ity problem, the correlation matrices were analysed as well.
It was found that most of the predictors are statistically inde-
pendent, showingR2 values generally lower than 0.16, which
assures the reliability of the results. High correlations were
found between mean curvature, on one hand, and plan and
profile curvature, on the other hand. The mean curvature was
however eliminated by the stepwise filtering procedure in all
sectors. Figure 8a–f shows the spatial distribution of the six
predictors in the case of the Helegiu sector. We chose to dis-
play the thematic maps for this sector because this is charac-
terized by a high geomorphologic and lithologic complexity,
which have the potential of emphasizing better the spatial
relations between landslide occurrence, the values of main
predictors and the susceptibility classes.

Following the susceptibility modelling, we obtained the
maps for all four sectors, which show five classes: very low,
low, medium, high and very high. Classified landslide sus-
ceptibility maps are displayed in Fig. 9. Though the lim-
its of classes vary slightly from one sector to another when
using the natural breaks method (Jenks) algorithm, the dif-
ferences are insignificant. As the threshold values separat-
ing the susceptibility classes present little variations among
the four sectors, they allow an objective assessment of class
percentages (Table 5). Also, this table presents the percent-
ages of susceptibility classes for each sector. Very low and
low susceptibility classes group 70–75 % of the Căpuşu de
Câmpie, Şipote and Lungani sectors, while these classes rep-
resent about 57 % in the case of the Helegiu sector. The high
and very high susceptibility classes represent 14–18 % in the
Căpuşu de Câmpie, Şipote and Lungani sectors and about
27 % in the case of the Helegiu sector.
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Table 3.Landslide density (LD) for lithology, slope aspect and land use classes.

Sectors Lithology LD Slope LD Land use LD
aspect

Căpuşu de
Câmpie

Alluvial and colluvial deposits –
Quaternary

0.196 North 0.710 Built area 0.001

Clays and marls, sand, sandstones,
volcanic tuffs – Sarmatian

2.526 East 0.696 Arable land 0.200

Clays, sands, volcanic tuffs – Pannonian 1.058 South 1.226 Pastures 3.709
West 1.574 Forest and pastures 4.100

Forest 0.889
Waters and wetlands 0.000

Şipote Gravels, sands – Quaternary 0.472 North 1.638 Built area 0.084
Marls, clays, sandstones and sand complexes –
Sarmatian

1.123 East 0.781 Arable land 0.268

South 0.494 Pastures 2.744
West 1.275 Forest 2.604

Waters and wetlands 0.005
Degraded land 5.053

Lungani Gravels, sands (fluvial terraces) –
Quaternary (Pleistocene)

0.065 North 1.138 Built area 0.321

Sands, clays – Quaternary (Holocene) 0.328 East 0.861 Arable land 0.498
Marls, clays, sandstones and sand complexes –
Sarmatian

1.200 South 0.466 Pastures 1.911

West 1.618 Forest 1.950
Waters and wetlands 0.003

Helegiu Gravels, sands – Quaternary 0.279 North 1.138 Built area 0.021
Sandstones, volcanic tuffs – Tortonian 1.048 East 0.736 Arable land 0.065
Sandstones, marls, gypsum – Helvetian 1.161 South 0.852 Arable land and

pastures
1.462

Sandstones, clays – Volhinian 1.189 West 1.316 Pastures 1.998
Marls, clays, salt – Badenian 0.902 Forest 0.221
Sandstones, menilite, dysodilic shales –
Latorfian-chattian

1.196 Waters and wetlands 0.000

Argilaceous shales, clays, sandstones –
Priabonian

0.814 Degraded land 3.268

Calcareous sandstones, marls, conglomerates –
Lutetian

1.888

The spatial distribution of the LSI points out tight rela-
tions between landslides and the main terrain morphological
and land use features. In all sectors, the high and very high
susceptibility classes correspond to the slopes most affected
by landslides. In the C̆apuşu de Câmpie sector, these classes
clearly reveal the upstream areas of the semi-circular basins
developed along the already mentioned dome flanks, the con-
figuration of which is mainly the result of their evolution
through landsliding processes. In the Şipote sector, the two
classes are distributed along three alignments oriented NW–
SE, along the cuesta scarps. In the western part of this sector,
the LSI values delineate a major landslide basin ofhârtop
type. A general W–E orientation is observed in the northern
part of the Lungani sector, where the long-term fluvial pro-
cesses have individualized two cuesta-like slopes, separated

by a sector of terraces with low LSI values. In the southern
part of this sector, the dense hydrographic network, gener-
ally oriented S–N, is well exposed by these high and very
high classes of LSI. Apparently randomly distributed in the
Helegiu sector, the two LSI classes correspond greatly to the
spatial patterns of land use, in the central and north-eastern
part, and of lithology, in the south-western part.

As for the models’ validation, the classification accuracy
tables indicate good and stable logistic regression models.
The percentages of correctly classified points, for a cut-off
value of 0.5, were achieved for both training and validation
samples, and are presented in Table 6. Higher model accu-
racy is noticed for the plateau sectors, especially for Şipote
and Lungani (with an overall accuracy of 86.86 and 86.88 %,
respectively).
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Table 4.Logistic regression (standardized) coefficients with predictors listed in order of decreasing importance.

Sectors Predictors Regression Standardized Standard Wald Pr> Chi2 Wald lower Wald upper
coefficients regression error chi-square bound bound

coefficients (95 %) (95 %)

Căpuşu de Câmpie Slope angle 0.211 0.587 0.054 118.302< 0.0001 0.481 0.692
Land use class 0.604 0.581 0.046 160.728< 0.0001 0.491 0.670
Slope height 0.026 0.420 0.072 34.182< 0.0001 0.279 0.561
Profile curvature −5.333 −0.392 0.056 49.818 < 0.0001 −0.501 −0.283
Elevation −0.011 −0.255 0.072 12.370 0.000 −0.397 −0.113
Lithological class 0.720 0.120 0.048 6.199 0.013 0.026 0.215
Plan curvature 1.727 0.105 0.048 4.866 0.027 0.012 0.199

Şipote Slope angle 0.275 0.746 0.060 152.809< 0.0001 0.628 0.864
Land use class 0.903 0.686 0.054 162.138< 0.0001 0.581 0.792
Slope height 0.070 0.513 0.063 65.288< 0.0001 0.389 0.637
Elevation 0.009 0.138 0.060 5.223 0.022 0.020 0.256

Lungani Slope angle 0.293 0.665 0.062 113.718< 0.0001 0.543 0.787
Slope height 0.046 0.499 0.106 22.370< 0.0001 0.292 0.706
Profile curvature −7.291 −0.460 0.060 59.287 < 0.0001 −0.577 −0.343
Plan curvature 8.378 0.436 0.055 61.773< 0.0001 0.327 0.545
Distance from drainage −0.004 −0.314 0.080 15.326 < 0.0001 −0.471 −0.157
Land use class 0.597 0.237 0.047 24.998< 0.0001 0.144 0.330
Lithological class 1.362 0.236 0.074 10.072 0.002 0.090 0.381
Elevation −0.013 −0.208 0.094 4.913 0.027 −0.392 −0.024

Helegiu Land use class 1.374 0.634 0.042 225.937< 0.0001 0.552 0.717
Profile curvature −3.811 −0.351 0.041 73.132 < 0.0001 −0.431 −0.270
Slope angle 0.111 0.324 0.040 67.281< 0.0001 0.247 0.402
Lithological class 1.455 0.275 0.042 41.996< 0.0001 0.192 0.358
Plan curvature 2.153 0.205 0.038 29.504< 0.0001 0.131 0.279
Aspect class 1.391 0.180 0.035 26.024< 0.0001 0.111 0.249
Distance from drainage 0.001 0.115 0.037 9.906 0.002 0.043 0.187

Table 5.Upper thresholds values (TV), derived by Jenks’ method, and percentages of landslide susceptibility classes from the total area of
each sector.

Sector Very low Low Medium High Very high

TV % TV % TV % TV % TV %

Căpuşu de Câmpie 0.110 50.08 0.282 21.85 0.512 9.85 0.762 8.68 0.999 9.54
Şipote 0.112 55.60 0.272 19.57 0.490 10.37 0.743 7.29 0.999 7.16
Lungani 0.109 52.92 0.289 17.60 0.512 11.45 0.758 9.09 0.999 8.95
Helegiu 0.137 36.46 0.320 21.12 0.527 15.65 0.742 14.16 0.999 12.61

The area under the ROC curves, in the case of training
samples (Fig. 10a), indicates high degree of accuracy for all
landslide susceptibility models, while their predictive abili-
ties are proven by the high AUC values computed for the val-
idation samples (Fig. 10b). It should be noted that the Şipote
sector followed by C̆apuşu de Câmpie and Lungani sectors,
present higher AUC values, of 0.922 and 0.912 respectively,
compared to the mountainous sector of Helegiu (0.852). The
AUC values are even higher in the case of the validation sam-
ples (0.940 for Şipote and 0.921 for Lungani and Căpuşu de
Câmpie), excepting the Helegiu sector for which the value is
similar to the one computed for the training sample (0.851).

5 Discussions

In general, in every analysed sector, the landslide suscep-
tibility is determined mostly by certain predictors such as
slope angle, land use, slope height, and lithology, while other
predictors play a secondary role (profile curvature, plan cur-
vature, elevation, and distance from drainage network). The
least relevant predictors are the mean curvature (which was
eliminated from the analysis by the stepwise procedure for
all study sectors, due to redundancy, as it is well correlated
with plan and profile curvatures) and slope aspect (which was
removed in the case of three sectors – Căpuşu de Câmpie,
Şipote and Lungani).
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Table 6.Percentages of correctly classified points with respect to training and validation samples, using a cut-off value of 0.5.

Sector Training sample Validation sample

% correct for % correct for Overall % correct for % correct for Overall
landslide-free landslide points accuracy (%) landslide-free landslide

points points points accuracy (%)

Căpuşu de Câmpie 82.42 85.48 83.95 82.14 85.29 83.73
Şipote 84.38 88.19 86.26 86.49 87.20 86.86
Lungani 82.33 88.11 85.18 84.64 88.82 86.88
Helegiu 72.59 84.02 78.44 77.34 78.61 77.97

Fig. 7.Standardized coefficients’ values of predictors (with bars showing 95 % confidence interval):(a) Căpuşu de Câmpie sector;(b) Şipote
sector;(c) Lungani sector;(d) Helegiu sector.

Slope angle is the most important factor for the Căpuşu
de Câmpie, Şipote and Lungani sectors. This is the predic-
tor that is almost constantly found among the most impor-
tant three factors within many of the studies applying a simi-
lar methodology assessment at regional scale (Ayalew et al.,
2005; Gorsevski et al., 2006; Bai et al, 2010; Chauhan et
al., 2010; Dominguez-Cuesta et al., 2010; Pradhan and Lee,
2010; Van den Eeckhaut et al., 2010; Yalcin et al., 2011).
The great influence of slope factor highlights the high and
very high susceptibility classes, which are clearly positioned
along the cuesta escarpments. For the Şipote and Lungani
sectors, though the overall correlation between slope and
lithology is not significant, high slope values are locally as-

sociated with the occurrence of hard rocks which form the
monostructural plateaus. As a consequence, the areas with
high landslide susceptibility occur mostly in the upper part
of slopes. This aspect is also documented in literature, es-
pecially in the monoclinal regions affected by landslides in
western Europe: Belgium and France (van den Eeckhaut et
al., 2009, 2010). For the Helegiu sector, we can affirm that
slope angle is less effective because of the lithological char-
acteristics which did not favour the accumulation of deep
slope deposits. This explains the low values for mean sur-
face of landslides and, at the same time, the large number
of small landslides, the occurrence of which links with the
higher density of lithological contacts.
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Fig. 8.Significant predictors for the Helegiu sector:(a) land use;(b) slope angle;(c) lithology; (d) slope aspect;(e)profile curvature;(f) plan
curvature.
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Fig. 9.Classified landslide susceptibility maps:(a) Căpuşu de Câmpie sector;(b) Şipote sector;(c) Lungani sector;(d) Helegiu sector.

Fig. 10.ROC curves with associated AUC values computed from training samples(a) and validation samples(b).
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Land use is the most important factor for the Helegiu sec-
tor and is placed in the second position in the case of Căpuşu
de Câmpie and Şipote sectors. It may be possible that the
results are influenced by the consideration of present land
use and not by the one prior to the occurrence of landslides
(Atkinson and Massari, 1998). Since our database does not
have a multitemporal nature, we cannot make judgments on
the temporal relationships between landslides and land use
change. We can affirm that the changes in the land use (such
as deforestation, grazing expansion, afforestation) are highly
reflected in landslide evolution. Given that the highest den-
sities of landslides are associated with land covered with
pasture and forest, we can define the following two circum-
stances: first, the landslides were favoured by deforestation
(currently being present mainly on terrains with pastures);
and second, where the lands affected by landslides have been
afforested (now being found as stabilized landslides). For the
Helegiu sector, the land use factor stands out because of its
much higher coefficient relative to the other factors, due to
the massive deforestations from the last two centuries which
led to the great extension of landslides on terrains currently
used as pastures. Yet another possible explanation is the in-
tegration of the degraded land class which has the biggest
value of landslide density. For the plateau sectors (Căpuşu de
Câmpie and Şipote), land degradation processes, including
landsliding, were favoured, among others, by long-term sub-
sistence agricultural practices, with no agrotechnical conser-
vation measures, and high degree of land property fragmenta-
tion and tillage along the maximum slope gradient direction.
The persistence and the shifting on parallel tracks of agricul-
tural exploitation roads have constituted, in many situations,
favourable conditions for the extension of landslides. For the
Lungani sector, the lower relative importance of this param-
eter is explained by the presence of the Bahluieţ floodplain
(in the central-northern part), which is mostly covered with
pastures, but where landslides are missing.

The slope height is the next important factor, being the sec-
ond in the case of the Lungani sector and the third for Căpuşu
de Câmpie and Şipote sectors. Its significant influence is ex-
plained by the high relative altitude of landslide depletion
areas, on which the models are based. For the Helegiu sector
the slope height is not significant, because the landslides are
distributed over a lager altitudinal variance within the slopes,
by comparison with the other three sectors.

The lithology factor occupies the fourth position in the
predictors’ hierarchy in the case of the Helegiu sector. The
landslide density values reveal the influence of some se-
quences of marl, sandstone and conglomerate strata in in-
creasing the landslide susceptibility values. For the other sec-
tors, this factor has a lower influence due to the relatively
high geological uniformity.

The other factors, as already mentioned, proved to be less
important predictors for landslide susceptibility assessment
in all study sectors.

Regarding the spatial variability of the predictor coeffi-
cients, we could mention the difference between Şipote and
Lungani sectors, both of them belonging to the same geo-
graphical unit – the Moldavian Plateau. We consider that the
higher fragmentation degree in the Lungani sector, due to a
higher density of rivers, is the main cause for shallow land-
slide occurrence. As such, in this sector the plan and profile
curvature predictors have higher values of these coefficients.
In addition, the distance from drainage network predictor has
the highest value among the four sectors.

Despite its high predictive power, as in the case of any
statistical method, our susceptibility models have some in-
herent limitations: (i) in all the landslide types being anal-
ysed (shallow and deep seated), the calculus of susceptibil-
ity values could have an important degree of generalization;
(ii) being medium scale models, they do not consider the
large spatial variability of local conditions that could influ-
ence landslide occurrence (especially the geotechnical ones);
these models are mainly build upon the mappable parameters
from cartographic sources and those that are derived from the
DEM; and (iii) the models assume that landslides will occur
under the influence of the same combination of predictors,
whereas field observations indicate that some landslides are
influenced by local conditions in conjunction with other fac-
tors, such as the slope angle (Che et al., 2012).

The application of a wide range of methods for landslide
susceptibility assessment is beneficial, as the current official
Romanian methodology has some important limitations: (i)
the absence of landslide inventory as a very important layer
to correlate spatial distribution of landslides and causal fac-
tors (Guzzetti, 2000; van Westen et. al., 2003) and also to
validate the results; (ii) the absence of the DEM and geo-
morphometrical parameters from the spatial database, such
as slope angle, slope aspect, topographical curvatures, dis-
tance to drainage network, etc.; (iii) the assignment of the
same weights to contributing factors of landslides in all Ro-
manian regions, while neglecting the major geomorpholog-
ical units; (iv) combining different databases which refer to
contributing factors at different scales (between 1: 500000
and 1: 5000), while the final map is achieved at 1: 25000
for county level and 1: 5000 for the local one; and (v) the
absence of a time factor in hazard evaluation (Manea and
Surdeanu, 2012).

In Romania, the continuous development of geospatial
databases, including both contributing factors and the com-
plete inventory of landslides, will allow wide applications
of statistical methods for landslide susceptibility assessment,
such as the logistic regression. This will be beneficial for the
creation of accurate landslide susceptibility maps, an essen-
tial tool for effective land-use management, which should be-
come a standard tool to support land management decision-
making (Akgun, 2012; Park et al., 2013).

Compared to our mentioned previous study on landslide
susceptibility in the C̆apuşu de Câmpie and Lungani sectors
(Mărğarint et al., 2011), the results of the present study are
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close, despite some small methodological differences, like
the predictors used and landslide inventory. In our previous
study we used a different number of predictors (nine pre-
dictors versus ten predictors in this study). As for the land-
slide inventory, this was based only on topographical maps
at 1: 25000 scales, therefore the generalization degree was
higher.

Considering the higher values of the AUC obtained both
in our previous study and in the present study, we can affirm
that the logistic regression could be an important alternative
to the current Romanian methodology and could improve the
landslide susceptibility mapping at medium to large scales.

6 Conclusions

The scientific literature provides several hierarchies of pre-
dictors with respect to their influence on landslide suscepti-
bility assessment, having a large range of variation. In most
cases, certain predictors occupy the first ranks: slope angle,
lithology, land use, and slope aspect. The present study con-
curs with these findings, placing the coefficients of predictors
within the limits that are specified in other similar studies.

For all study sectors, high values of predictors’ coefficients
are noticed for slope angle and land use. The influence of
lithology, in the case of the Helegiu mountainous sector, con-
firms the fact that, under high geological diversity conditions,
the predictor lithology has a significant relevance in landslide
susceptibility.

The ranks and coefficients associated with the other pre-
dictors show high degrees of variability from one sector to
another. It is obvious that the selection of common predic-
tors in landslide susceptibility assessment leads to more gen-
eralized analyses. The variation of the coefficients of pre-
dictors may suggest the existence of other factors, with lo-
cal influences, which are probably considered redundant in
some cases, but which should be evaluated as they reflect the
regional traits of landslide manifestation process. This vari-
ability could also be related to the spatial scale and to the
level of detail of input materials, on the basis of which the
data acquisition is performed.

The results of this paper allow us to consider that the lo-
gistic regression method could represent an alternative for
the landslide susceptibility and hazard mapping in Romania.
This paper’s method uses some essential elements that are
not found in the existent methodology (landslide inventory,
DEM and geomorphometrical parameters, and land use), and
which can make possible a better differentiation of landslide
susceptibility. The results of this study may help to improve
the accuracy of landslide susceptibility and hazard mapping
by the taking into account new landslide predisposal factors
and the differentiation of their weights within major geo-
graphical units.

Supplementary material related to this article is
available online at
http://www.nat-hazards-earth-syst-sci.net/13/3339/2013/
nhess-13-3339-2013-supplement.pdf.
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Armaş, I.: An analytic multicriteria hierarchical approach to assess
landslide vulnerability, Case study: Cornu village, Subcarpathian
Prahova Valley/Romania, Zeitschrift für Geomorphologie, 55,
209–229, 2011.
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