Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
Volume 13, issue 3
Nat. Hazards Earth Syst. Sci., 13, 605–623, 2013
https://doi.org/10.5194/nhess-13-605-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: 13th Plinius Conference on Mediterranean Storms: disasters...

Nat. Hazards Earth Syst. Sci., 13, 605–623, 2013
https://doi.org/10.5194/nhess-13-605-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 11 Mar 2013

Research article | 11 Mar 2013

On precipitation measurements collected by a weather radar and a rain gauge network

S. Sebastianelli1,2, F. Russo1, F. Napolitano1, and L. Baldini2 S. Sebastianelli et al.
  • 1Dipartimento di Ingegneria Civile, Edile e Ambientale, Sapienza Università di Roma, Rome, Italy
  • 2National Research Council, Institute of Atmospheric Sciences and Climate, Rome, Italy

Abstract. Many phenomena (such as attenuation and range degradation) can influence the accuracy of rainfall radar estimates. They introduce errors that increase as the distance from radar increases, thereby decreasing the reliability of radar estimates for applications that require quantitative precipitation estimation. The present paper evaluates radar error as a function of the range, in order to correct the rainfall radar estimates. The radar is calibrated utilizing data from the rain gauges. Then, the G/R ratio between the yearly rainfall amount measured in each rain gauge position during 2008 and the corresponding radar rainfall amount is calculated against the slant range. The trend of the G/R ratio shows two behaviours: a concave part due to the melting layer effect close to the radar location and an almost linear, increasing trend at greater distances. A best fitting line is used to find an adjustment factor, which estimates the radar error at a given range. The effectiveness of the methodology is verified by comparing pairs of rainfall time series that are observed simultaneously by collocated rain gauges and radar. Furthermore, the variability of the adjustment factor is investigated at the scale of event, both for convective and stratiform events. The main result is that there is not a univocal range error pattern, as it also depends on the characteristics of the considered event. On the other hand, the adjustment factor tends to stabilize itself for time aggregations of the order of one year or greater.

Publications Copernicus
Download
Citation