Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 14, issue 5 | Copyright
Nat. Hazards Earth Syst. Sci., 14, 1309-1323, 2014
https://doi.org/10.5194/nhess-14-1309-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 May 2014

Research article | 23 May 2014

Seismic hazard of the Iberian Peninsula: evaluation with kernel functions

M. J. Crespo1,3, F. Martínez2,3, and J. Martí1,3 M. J. Crespo et al.
  • 1Universidad Politécnica de Madrid, ETSI Minas, Calle de Ríos Rosas, 21, Madrid, Spain
  • 2Universidad Politécnica de Madrid, ETSI Caminos, Canales y Puertos, Calle Profesor Aranguren S/N, Ciudad Universitaria, Madrid, Spain
  • 3Principia, Velázquez, 94, 28006 Madrid, Spain

Abstract. The seismic hazard of the Iberian Peninsula is analysed using a nonparametric methodology based on statistical kernel functions; the activity rate is derived from the catalogue data, both its spatial dependence (without a seismogenic zonation) and its magnitude dependence (without using Gutenberg–Richter's relationship). The catalogue is that of the Instituto Geográfico Nacional, supplemented with other catalogues around the periphery; the quantification of events has been homogenised and spatially or temporally interrelated events have been suppressed to assume a Poisson process.

The activity rate is determined by the kernel function, the bandwidth and the effective periods. The resulting rate is compared with that produced using Gutenberg–Richter statistics and a zoned approach. Three attenuation relationships have been employed, one for deep sources and two for shallower events, depending on whether their magnitude was above or below 5. The results are presented as seismic hazard maps for different spectral frequencies and for return periods of 475 and 2475 yr, which allows constructing uniform hazard spectra.

Publications Copernicus
Download
Citation
Share