Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 14, issue 5 | Copyright
Nat. Hazards Earth Syst. Sci., 14, 1371-1381, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 May 2014

Research article | 28 May 2014

Temporal variations in the wind and wave climate at a location in the eastern Arabian Sea based on ERA-Interim reanalysis data

P. R. Shanas and V. Sanil Kumar P. R. Shanas and V. Sanil Kumar
  • Ocean Engineering, CSIR – National Institute of Oceanography (Council of Scientific & Industrial Research), Dona Paula, Goa 403 004, India

Abstract. Temporal variations in wind speed and significant wave height (SWH) at a location in the eastern Arabian Sea are studied using ERA-Interim reanalysis data from 1979 to 2012. A shallow water location is selected for the study since measured buoy data are available close to the location for comparison with the reanalysis data. The annual mean wind speed shows a statistically significant decreasing trend of 1.5 cm s−1 year−1, whereas a statistically insignificant increasing trend of 3.6 cm s−1 year−1 is observed for annual maximum wind speed due to the local events that altered the trend in annual maximum wind speed. Weakening of SWH during one of the peak monsoon months (August) is identified from the monthly analysis of SWH, which shows a higher upward trend in SWH during the southwest monsoon period, with an exception during August. The annual mean SWH shows a slight upward trend (0.012 cm year−1), whereas a larger upward trend (1.4 cm year−1) is observed for annual maximum SWH. Both identified trends are statistically insignificant. The influence of tropical cyclone activity is also studied and it is found that the maximum SWH and wind speed during 1996 are directly related to the cyclonic event.

Publications Copernicus