Articles | Volume 14, issue 9
https://doi.org/10.5194/nhess-14-2359-2014
https://doi.org/10.5194/nhess-14-2359-2014
Research article
 | 
05 Sep 2014
Research article |  | 05 Sep 2014

Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere–fire numerical model

C. C. Simpson, J. J. Sharples, and J. P. Evans

Related authors

Evolution of a pyrocumulonimbus event associated with an extreme wildfire in Tasmania, Australia
Mercy N. Ndalila, Grant J. Williamson, Paul Fox-Hughes, Jason Sharples, and David M. J. S. Bowman
Nat. Hazards Earth Syst. Sci., 20, 1497–1511, https://doi.org/10.5194/nhess-20-1497-2020,https://doi.org/10.5194/nhess-20-1497-2020, 2020
Short summary
Estimating grassland curing with remotely sensed data
Wasin Chaivaranont, Jason P. Evans, Yi Y. Liu, and Jason J. Sharples
Nat. Hazards Earth Syst. Sci., 18, 1535–1554, https://doi.org/10.5194/nhess-18-1535-2018,https://doi.org/10.5194/nhess-18-1535-2018, 2018
Short summary
Linking local wildfire dynamics to pyroCb development
R. H. D. McRae, J. J. Sharples, and M. Fromm
Nat. Hazards Earth Syst. Sci., 15, 417–428, https://doi.org/10.5194/nhess-15-417-2015,https://doi.org/10.5194/nhess-15-417-2015, 2015
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data
Adrián Cardíl, Victor M. Tapia, Santiago Monedero, Tomás Quiñones, Kerryn Little, Cathelijne R. Stoof, Joaquín Ramirez, and Sergio de-Miguel
Nat. Hazards Earth Syst. Sci., 23, 361–373, https://doi.org/10.5194/nhess-23-361-2023,https://doi.org/10.5194/nhess-23-361-2023, 2023
Short summary
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023,https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023,https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
A data-driven model for Fennoscandian wildfire danger
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023,https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Equivalent hazard magnitude scale
Yi Victor Wang and Antonia Sebastian
Nat. Hazards Earth Syst. Sci., 22, 4103–4118, https://doi.org/10.5194/nhess-22-4103-2022,https://doi.org/10.5194/nhess-22-4103-2022, 2022
Short summary

Cited articles

Anderson, H.: Aids to determining fuel models for estimating fire behaviour, Report, Intermountain Forest and Range Experiment Station, General Technical Report INT-122, USDA Forest Service, Ogden, 1982.
Clark, T., Jenkins, M., Coen, J., and Packham, D.: A coupled atmosphere-fire model: Convective feedback on fire-line dynamics, J. Appl. Meteorol., 35, 875–901, 1996a.
Clark, T., Jenkins, M., Coen, J., and Packham, D.: A coupled atmosphere-fire model: Role of the convective Froude number and dynamic fingering at the fireline, Int. J. Wildl. Fire, 6, 177–190, 1996b.
Clark, T., Coen, J., and Latham, D.: Description of a coupled atmosphere-fire model, Int. J. Wildl. Fire, 13, 49–64, 2004.
Coen, J.: Simulation of the Big Elk Fire using coupled atmosphere-fire modeling, Int. J. Wildl. Fire, 14, 49–59, 2005.
Download
Altmetrics
Final-revised paper
Preprint