Articles | Volume 14, issue 10
https://doi.org/10.5194/nhess-14-2829-2014
https://doi.org/10.5194/nhess-14-2829-2014
Research article
 | 
31 Oct 2014
Research article |  | 31 Oct 2014

Recent advances and applications of WRF–SFIRE

J. Mandel, S. Amram, J. D. Beezley, G. Kelman, A. K. Kochanski, V. Y. Kondratenko, B. H. Lynn, B. Regev, and M. Vejmelka

Related authors

Hybrid Levenberg–Marquardt and weak-constraint ensemble Kalman smoother method
J. Mandel, E. Bergou, S. Gürol, S. Gratton, and I. Kasanický
Nonlin. Processes Geophys., 23, 59–73, https://doi.org/10.5194/npg-23-59-2016,https://doi.org/10.5194/npg-23-59-2016, 2016
Short summary
Spectral diagonal ensemble Kalman filters
I. Kasanický, J. Mandel, and M. Vejmelka
Nonlin. Processes Geophys., 22, 485–497, https://doi.org/10.5194/npg-22-485-2015,https://doi.org/10.5194/npg-22-485-2015, 2015
Short summary
Evaluation of WRF-SFIRE performance with field observations from the FireFlux experiment
A. K. Kochanski, M. A. Jenkins, J. Mandel, J. D. Beezley, C. B. Clements, and S. Krueger
Geosci. Model Dev., 6, 1109–1126, https://doi.org/10.5194/gmd-6-1109-2013,https://doi.org/10.5194/gmd-6-1109-2013, 2013

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Improving the fire weather index system for peatlands using peat-specific hydrological input data
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024,https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024,https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023,https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Modelling the vulnerability of urban settings to WUI fires in Chile
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
EGUsphere, https://doi.org/10.5194/egusphere-2023-2130,https://doi.org/10.5194/egusphere-2023-2130, 2023
Short summary
Automated Avalanche Terrain Exposure Scale (ATES) mapping – Local validation and optimization in Western Canada
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-112,https://doi.org/10.5194/nhess-2023-112, 2023
Revised manuscript accepted for NHESS
Short summary

Cited articles

Albini, F. A.: Estimating wildfire behavior and effects, US Forest Service, General Technical Report INT-30, http://www.treesearch.fs.fed.us/pubs/29574 (last access: October 2014), 1976.
Albini, F. A.: A model for the wind-blown flame from a line fire, Combustion and Flame, 43, 155–174, https://doi.org/10.1016/0010-2180(81)90014-6, 1981.
Albini, F. A.: Response of Free-Burning Fires to Nonsteady Wind, Combust. Sci. Technol., 29, 225–241, https://doi.org/10.1080/00102208208923599, 1982.
Anderson, H. E.: Aids to determining fuel models for estimating fire behavior, USDA Forest Service General Technical Report INT-122, http://www.fs.fed.us/rm/pubs_int/int_gtr122.html (last access: October 2014), 1982.
Balbi, J. H., Morandini, F., Silvani, X., Filippi, J. B., and Rinieri, F.: A physical model for wildland fires, Combust. Flame, 156, 2217–2230, https://doi.org/10.1016/j.combustflame.2009.07.010, 2009.
Download
Altmetrics
Final-revised paper
Preprint