Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year
  • CiteScore value: 2.43 CiteScore
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 73 Scimago H
    index 73
Volume 14, issue 12 | Copyright
Nat. Hazards Earth Syst. Sci., 14, 3175-3193, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 02 Dec 2014

Research article | 02 Dec 2014

Seismic and mechanical studies of the artificially triggered rockfall at Mount Néron (French Alps, December 2011)

P. Bottelin1, D. Jongmans1, D. Daudon2, A. Mathy3, A. Helmstetter1, V. Bonilla-Sierra2, H. Cadet3, D. Amitrano1, V. Richefeu2, L. Lorier3, L. Baillet1, P. Villard2, and F. Donzé2 P. Bottelin et al.
  • 1ISTerre, Université de Grenoble 1, CNRS, BP 53, F-38041 Grenoble CEDEX 9, France
  • 2Laboratoire 3S-R, Université de Grenoble 1, G-INP, CNRS, BP 53, F-38041 Grenoble CEDEX 9, France
  • 3Société Alpine de Géotechnique (SAGE), 2 rue de la Condamine, Gières, France

Abstract. The eastern limestone cliff of Mount Néron (French Alps) was the theater for two medium-size rockfalls between summer and winter 2011. On 14 August 2011, a ~2000 m3 rock compartment detached from the cliff, fell 100 m below and propagated down the slope. Although most of the fallen rocks deposited on the upper part of the slope, some blocks of about 15 m in size were stopped by a ditch and an earthen barrier after a run-out of 800 m. An unstable overhanging ~2600 m3 compartment remained attached to the cliff and was blasted on 13 December 2011. During this artificially triggered event, 7 blocks reached the same ditch, with volumes ranging from 0.8 to 12 m3. A semi-permanent seismic array located about 2.5 km from the site recorded the two events, providing a unique opportunity to understand and to compare the seismic phases generated during natural and artificially triggered rockfalls. Both events have signal duration of ~100 s with comparable maximum amplitudes recorded at large distances (computed local magnitude of 1.14 and 1.05, respectively), most of the energy lying below 20 Hz. Remote sensing techniques (photogrammetry and lidar) were employed before and after the provoked rockfall, allowing the volume and fracturing to be characterized. This event was filmed by two video cameras, and the generated ground motions were recorded using two temporary 3C seismic sensors and three seismic arrays deployed at the slope toe. Videos and seismogram processing provided estimates of the propagation velocity during the successive rockfall phases, which ranges from 12 to 30 m s−1. The main seismic phases were obtained from combined video and seismic signal analyses. The two most energetic phases are related to the ground impact of fallen material after free fall, and to individual rock block impacts into the ditch and the earthen barrier. These two phases are characterized by similar low-frequency content but show very different particle motions. The discrete element technique allowed reproducing the key features of the rockfall dynamics, yielding propagation velocities compatible with experimental observations.

Publications Copernicus
Short summary
Two mid-size rockfalls (~2,000 m3 each) occurred at the same place in 2011. While the first event was natural, the second one was artificially triggered and recorded by video cameras and seismic sensors. The measurements showed propagation velocities ranging from 12 to 30 m/s over the successive event phases. The most seismogenic phases were related to ground impact after free-fall and individual block impacts into a protective barrier. DEM reproduced the key features of the rockfall dynamics.
Two mid-size rockfalls (~2,000 m3 each) occurred at the same place in 2011. While the first...