Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 14, issue 2 | Copyright
Nat. Hazards Earth Syst. Sci., 14, 443-457, 2014
https://doi.org/10.5194/nhess-14-443-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 28 Feb 2014

Research article | 28 Feb 2014

Karst show caves – how DTN technology as used in space assists automatic environmental monitoring and tourist protection – experiment in Postojna Cave

F. Gabrovšek1, B. Grašič2, M. Z. Božnar2, P. Mlakar2, M. Udén3, and E. Davies4 F. Gabrovšek et al.
  • 1Karst Research Institute, Research Centre of the Slovenian Academy of Sciences and Arts, Postojna, Slovenia
  • 2MEIS d.o.o., Mali Vrh pri Šmarju, Slovenia
  • 3Luleå University of Technology, Luleå, Sweden
  • 4Folly Consulting Ltd, Cambridgeshire, UK

Abstract. The paper presents an experiment demonstrating a novel and successful application of delay- and disruption-tolerant networking (DTN) technology for automatic data transfer in a karst cave early warning and measuring system. The experiment took place inside the Postojna Cave in Slovenia, which is open to tourists. Several automatic meteorological measuring stations are set up inside the cave, as an adjunct to the surveillance infrastructure; the regular data transfer provided by the DTN technology allows the surveillance system to take on the role of an early warning system (EWS). One of the stations is set up alongside the railway tracks, which allows the tourist to travel inside the cave by train. The experiment was carried out by placing a DTN "data mule" (a DTN-enabled computer with WiFi connection) on the train and by upgrading the meteorological station with a DTN-enabled WiFi transmission system. When the data mule is in the wireless drive-by mode, it collects measurement data from the station over a period of several seconds as the train without stopping passes the stationary equipment, and delivers data at the final train station by the cave entrance. This paper describes an overview of the experimental equipment and organization allowing the use of a DTN system for data collection and an EWS inside karst caves where there is regular traffic of tourists and researchers.

Publications Copernicus
Download
Citation
Share