Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 14, issue 3 | Copyright

Special issue: Advanced methods for flood estimation in a variable and changing...

Nat. Hazards Earth Syst. Sci., 14, 625-634, 2014
https://doi.org/10.5194/nhess-14-625-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Mar 2014

Research article | 18 Mar 2014

A hydro-sedimentary modeling system for flash flood propagation and hazard estimation under different agricultural practices

N. N. Kourgialas and G. P. Karatzas N. N. Kourgialas and G. P. Karatzas
  • Department of Environmental Engineering, Technical University of Crete, Polytechnioupolis, 73100 Chania, Greece

Abstract. A modeling system for the estimation of flash flood flow velocity and sediment transport is developed in this study. The system comprises three components: (a) a modeling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection–dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modeling is the Manning's coefficient, an indicator of the channel resistance which is directly dependent on riparian vegetation changes. Riparian vegetation's effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed-cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modeling system is used to evaluate and illustrate the flood hazard for different riparian vegetation cutting scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, a well-balanced selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood-prone areas. The proposed methodology was applied to the downstream part of a small Mediterranean river basin in Crete, Greece.

Publications Copernicus
Special issue
Download
Citation
Share