Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Nat. Hazards Earth Syst. Sci., 15, 1103-1121, 2015
https://doi.org/10.5194/nhess-15-1103-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
02 Jun 2015
Seismic vulnerability and risk assessment of Kolkata City, India
S. K. Nath, M. D. Adhikari, N. Devaraj, and S. K. Maiti Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, 721302, West Bengal, India
Abstract. The city of Kolkata is one of the most urbanized and densely populated regions in the world and a major industrial and commercial hub of the eastern and northeastern region of India. In order to classify the seismic risk zones of Kolkata we used seismic hazard exposures on the vulnerability components, namely land use/land cover, population density, building typology, age and height. We microzoned seismic hazard of the city by integrating seismological, geological and geotechnical themes in GIS, which in turn are integrated with the vulnerability components in a logic-tree framework for the estimation of both the socioeconomic and structural risk of the city. In both the risk maps, three broad zones have been demarcated as "severe", "high" and "moderate". There had also been a risk-free zone in the city that is termed as "low". The damage distribution in the city due to the 1934 Bihar–Nepal earthquake of Mw = 8.1 matches satisfactorily well with the demarcated risk regime. The design horizontal seismic coefficients for the city have been worked out for all the fundamental periods that indicate suitability for "A", "B" and "C" type of structures. The cumulative damage probabilities in terms of "none", "slight", "moderate", "extensive" and "complete" have also been assessed for the predominantly four model building types viz. RM2L, RM2M, URML and URMM for each seismic structural risk zone in the city. Both the seismic hazard and risk maps are expected to play vital roles in the earthquake-inflicted disaster mitigation and management of the city of Kolkata.

Citation: Nath, S. K., Adhikari, M. D., Devaraj, N., and Maiti, S. K.: Seismic vulnerability and risk assessment of Kolkata City, India, Nat. Hazards Earth Syst. Sci., 15, 1103-1121, https://doi.org/10.5194/nhess-15-1103-2015, 2015.
Publications Copernicus
Download
Short summary
We microzoned seismic hazard of the City of Kolkata, India by integrating seismological, geological and geotechnical themes in GIS which in turn is integrated with the vulnerability components in a logic-tree framework for the estimation of both the socio-economic and structural risk of the City. The cumulative damage probabilities in terms of ‘none’, ‘slight’, ‘moderate’, ‘extensive’ and ‘complete’ have been assessed for the predominantly four model building types RM2L, RM2M, URML and URMM.
We microzoned seismic hazard of the City of Kolkata, India by integrating seismological,...
Share