Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Nat. Hazards Earth Syst. Sci., 15, 1873-1880, 2015
https://doi.org/10.5194/nhess-15-1873-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
20 Aug 2015
Pre-earthquake magnetic pulses
J. Scoville1,2,3, J. Heraud4, and F. Freund1,2,3 1San Jose State University, Dept. of Physics, San Jose, CA 95192-0106, USA
2SETI Institute, Mountain View, CA 94043, USA
3NASA Ames Research Center, Moffett Field, CA 94035, USA
4Pontificia Universidad Católica del Perú, Lima, Peru
Abstract. A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earthquakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

Citation: Scoville, J., Heraud, J., and Freund, F.: Pre-earthquake magnetic pulses, Nat. Hazards Earth Syst. Sci., 15, 1873-1880, https://doi.org/10.5194/nhess-15-1873-2015, 2015.
Publications Copernicus
Download
Short summary
A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or weeks before earthquakes. Their extremely long wavelength allows them to pass through kilometers of rock, and the source of the pulses may be triangulated to pinpoint locations where stresses are building deep within the Earth.
A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that...
Share