Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 15, issue 1 | Copyright

Special issue: Flood ris​k analysis and integ​rated management

Nat. Hazards Earth Syst. Sci., 15, 59-73, 2015
https://doi.org/10.5194/nhess-15-59-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Jan 2015

Research article | 12 Jan 2015

Risk to life due to flooding in post-Katrina New Orleans

A. Miller1, S. N. Jonkman2, and M. Van Ledden3 A. Miller et al.
  • 1Department of Civil Engineering, Delft University of Technology, Delft, the Netherlands
  • 2Delft University of Technology, Delft, the Netherlands
  • 3Royal Haskoning DHV, Rdam, the Netherlands

Abstract. Since the catastrophic flooding of New Orleans due to Hurricane Katrina in 2005, the city's hurricane protection system has been improved to provide protection against a hurricane load with a 1/100 per year exceedance frequency. This paper investigates the risk to life in post-Katrina New Orleans. In a flood risk analysis the probabilities and consequences of various flood scenarios have been analyzed for the central area of the city (the metro bowl) to give a preliminary estimate of the risk to life in the post-Katrina situation. A two-dimensional hydrodynamic model has been used to simulate flood characteristics of various breaches. The model for estimation of fatality rates is based on the loss of life data for Hurricane Katrina. Results indicate that – depending on the flood scenario – the estimated loss of life in case of flooding ranges from about 100 to nearly 500, with the highest life loss due to breaching of the river levees leading to large flood depths. The probability and consequence estimates are combined to determine the individual risk and societal risk for New Orleans. When compared to risks of other large-scale engineering systems (e.g., other flood prone areas, dams and the nuclear sector) and acceptable risk criteria found in literature, the risks for the metro bowl are found to be relatively high. Thus, despite major improvements to the flood protection system, the flood risk to life of post-Katrina New Orleans is still expected to be significant. Indicative effects of reduction strategies on the risk level are discussed as a basis for further evaluation and discussion.

Publications Copernicus
Special issue
Download
Short summary
After Hurricane Katrina in 2005, New Orleans’ hurricane protection was improved to withstand a 1/100 per year hurricane. This paper quantifies the risk to life in post-Katrina New Orleans. When compared to risks of other large-scale engineering systems (e.g. other flood prone areas, dams and the nuclear sector) and acceptable risk criteria, results indicate the risk to life is significant. Results and methods of this study can inform future flood protection management and risk communication.
After Hurricane Katrina in 2005, New Orleans’ hurricane protection was improved to withstand a...
Citation
Share