Articles | Volume 16, issue 1
https://doi.org/10.5194/nhess-16-15-2016
https://doi.org/10.5194/nhess-16-15-2016
Research article
 | 
18 Jan 2016
Research article |  | 18 Jan 2016

Calibration and validation of FLFArs -- a new flood loss function for Australian residential structures

R. Hasanzadeh Nafari, T. Ngo, and W. Lehman

Related authors

Flood loss modelling with FLF-IT: a new flood loss function for Italian residential structures
Roozbeh Hasanzadeh Nafari, Mattia Amadio, Tuan Ngo, and Jaroslav Mysiak
Nat. Hazards Earth Syst. Sci., 17, 1047–1059, https://doi.org/10.5194/nhess-17-1047-2017,https://doi.org/10.5194/nhess-17-1047-2017, 2017
Short summary

Related subject area

Risk Assessment, Mitigation and Adaptation Strategies, Socioeconomic and Management Aspects
Quantifying the potential benefits of risk-mitigation strategies on future flood losses in Kathmandu Valley, Nepal
Carlos Mesta, Gemma Cremen, and Carmine Galasso
Nat. Hazards Earth Syst. Sci., 23, 711–731, https://doi.org/10.5194/nhess-23-711-2023,https://doi.org/10.5194/nhess-23-711-2023, 2023
Short summary
Review article: Potential of nature-based solutions to mitigate hydro-meteorological risks in sub-Saharan Africa
Kirk B. Enu, Aude Zingraff-Hamed, Mohammad A. Rahman, Lindsay C. Stringer, and Stephan Pauleit
Nat. Hazards Earth Syst. Sci., 23, 481–505, https://doi.org/10.5194/nhess-23-481-2023,https://doi.org/10.5194/nhess-23-481-2023, 2023
Short summary
Invited perspectives: An insurer's perspective on the knowns and unknowns in natural hazard risk modelling
Madeleine-Sophie Déroche
Nat. Hazards Earth Syst. Sci., 23, 251–259, https://doi.org/10.5194/nhess-23-251-2023,https://doi.org/10.5194/nhess-23-251-2023, 2023
Short summary
Classifying marine faults for hazard assessment offshore Israel: a new approach based on fault size and vertical displacement
May Laor and Zohar Gvirtzman
Nat. Hazards Earth Syst. Sci., 23, 139–158, https://doi.org/10.5194/nhess-23-139-2023,https://doi.org/10.5194/nhess-23-139-2023, 2023
Short summary
Assessing agriculture's vulnerability to drought in European pre-Alpine regions
Ruth Stephan, Stefano Terzi, Mathilde Erfurt, Silvia Cocuccioni, Kerstin Stahl, and Marc Zebisch
Nat. Hazards Earth Syst. Sci., 23, 45–64, https://doi.org/10.5194/nhess-23-45-2023,https://doi.org/10.5194/nhess-23-45-2023, 2023
Short summary

Cited articles

André, C., Monfort, D., Bouzit, M., and Vinchon, C.: Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events, Nat. Hazards Earth Syst. Sci., 13, 2003–2012, https://doi.org/10.5194/nhess-13-2003-2013, 2013.
Apel, H., Aronica, G. T., Kreibich, H., and Thieken, A. H.: Flood risk analyses – how detailed do we need to be?, Nat. Hazards, 49, 79–98, 2009.
Barton, C., Viney, E., Heinrich, L., and Turnley, M.: The Reality of Determining Urban Flood Damages, in: NSW Floodplain Management Authorities Annual Conference, Sydney, 2003.
Bundaberg Regional Council: Burnett River Floodplain – Bundaberg Ground Elevations [WWW Document], available at: http://www.bundaberg.qld.gov.au/flood/mapping (last access: 30 September 2015), 2013a.
Bundaberg Regional Council: Burnett River Catchment Map [WWW Document], available at: http://www.bundaberg.qld.gov.au/flood/mapping (last access: 30 September 2015), 2013b.
Download
Short summary
In this paper, a newly derived flood loss function for Australian residential structures (FLFArs) is presented and calibrated by using historic data collected from an extreme event in Queensland, Australia, that occurred in 2013. Afterwards, the performance of FLFArs has been compared with the observed damage data collected from a 2012 flood event in Maranoa, Queensland. Based on this analysis, validation of FLFArs has been performed in terms of Australian geographical conditions.
Altmetrics
Final-revised paper
Preprint