Articles | Volume 16, issue 2
https://doi.org/10.5194/nhess-16-595-2016
https://doi.org/10.5194/nhess-16-595-2016
Research article
 | 
02 Mar 2016
Research article |  | 02 Mar 2016

The European lightning location system EUCLID – Part 1: Performance analysis and validation

Wolfgang Schulz, Gerhard Diendorfer, Stéphane Pedeboy, and Dieter Roel Poelman

Abstract. In this paper we present a performance analysis of the European lightning location system EUCLID for cloud-to ground flashes/strokes in terms of location accuracy (LA), detection efficiency (DE) and peak current estimation. The performance analysis is based on ground truth data from direct lightning current measurements at the Gaisberg Tower (GBT) and data from E-field and video recordings. The E-field and video recordings were collected in three different regions in Europe, namely in Austria, Belgium and France. The analysis shows a significant improvement of the LA of the EUCLID network over the past 7 years. Currently, the median LA is in the range of 100 m in the center of the network and better than 500 m within the majority of the network. The observed DE in Austria and Belgium is similar, yet a slightly lower DE is determined in a particular region in France, due to malfunctioning of a relevant lightning location sensor during the time of observation. The overall accuracy of the lightning location system (LLS) peak current estimation for subsequent strokes is reasonable keeping in mind that the LLS-estimated peak currents are determined from the radiated electromagnetic fields, assuming a constant return stroke speed.

The results presented in this paper can be used to estimate the performance of the EUCLID network related to cloud-to-ground flashes/strokes for regions with similar sensor baselines and sensor technology.

Download
Short summary
In this paper, we present a performance analysis of the European lightning location system EUCLID for cloud-to-ground flashes/strokes in terms of location accuracy, detection efficiency and peak current estimation. The performance analysis is based on ground truth data from direct lightning current measurements at the Gaisberg Tower and data from E-field and video recordings.
Altmetrics
Final-revised paper
Preprint