Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 17, issue 7 | Copyright
Nat. Hazards Earth Syst. Sci., 17, 1177-1190, 2017
https://doi.org/10.5194/nhess-17-1177-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Jul 2017

Research article | 14 Jul 2017

Increasing frequencies and changing characteristics of heavy precipitation events threatening infrastructure in Europe under climate change

Katrin M. Nissen and Uwe Ulbrich Katrin M. Nissen and Uwe Ulbrich
  • Freie Universität Berlin, Institute of Meteorology, Carl-Heinrich-Becker-Weg 6–10, 12165 Berlin, Germany

Abstract. The effect of climate change on potentially infrastructure-damaging heavy precipitation events in Europe is investigated in an ensemble of regional climate simulations conducted at a horizontal resolution of 12km. Based on legislation and stakeholder interviews the 10-year return period is used as a threshold for the detection of relevant events.

A novel technique for the identification of heavy precipitation events is introduced. It records not only event frequency but also event size, duration and severity (a measure taking duration, size and rain amount into account) as these parameters determine the potential consequences of the event. Over most of Europe the frequency of relevant heavy precipitation events is predicted to increase with increasing greenhouse gas concentrations. The number of daily and multi-day events increases at a lower rate than the number of sub-daily events. The event size is predicted to increase in the future over many European regions, especially for sub-daily events. Moreover, the most severe events were detected in the projection period. The predicted changes in frequency, size and intensity of events may increase the risk for infrastructure damages. The climate change simulations do not show changes in event duration.

Download & links
Publications Copernicus
Download
Short summary
The effect of climate change on potentially infrastructure damaging heavy precipitation events in Europe is investigated. A novel technique records not only event frequency but also event size, duration and severity as these parameters determine the potential consequences of the event. Over most of Europe the frequency and size of heavy precipitation events is predicted to increase. Moreover, the most severe events are predicted for future periods.
The effect of climate change on potentially infrastructure damaging heavy precipitation events...
Citation
Share