Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 17, issue 10 | Copyright
Nat. Hazards Earth Syst. Sci., 17, 1823-1836, 2017
https://doi.org/10.5194/nhess-17-1823-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 23 Oct 2017

Research article | 23 Oct 2017

Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

Karolina Korzeniowska et al.
Related authors
Reconstruction of three-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes
Andrin Caviezel, Sophia E. Demmel, Adrian Ringenbach, Yves Bühler, Guang Lu, Marc Christen, Claire E. Dinneen, Lucie A. Eberhard, Daniel von Rickenbach, and Perry Bartelt
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-74,https://doi.org/10.5194/esurf-2018-74, 2018
Manuscript under review for ESurf
Automated snow avalanche release area delineation – validation of existing algorithms and proposition of a new object-based approach for large scale hazard indication mapping
Yves Bühler, Daniel von Rickenbach, Andreas Stoffel, Stefan Margreth, Lukas Stoffel, and Marc Christen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-124,https://doi.org/10.5194/nhess-2018-124, 2018
Manuscript under review for NHESS
SUBAQUATIC DIGITAL ELEVATION MODELS FROM UAV-IMAGERY
C. Mulsow, R. Kenner, Y. Bühler, A. Stoffel, and H.-G. Maas
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 739-744, https://doi.org/10.5194/isprs-archives-XLII-2-739-2018,https://doi.org/10.5194/isprs-archives-XLII-2-739-2018, 2018
Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes
Cesar Vera Valero, Nander Wever, Yves Bühler, Lukas Stoffel, Stefan Margreth, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 16, 2303-2323, https://doi.org/10.5194/nhess-16-2303-2016,https://doi.org/10.5194/nhess-16-2303-2016, 2016
Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations
Yves Bühler, Marc S. Adams, Ruedi Bösch, and Andreas Stoffel
The Cryosphere, 10, 1075-1088, https://doi.org/10.5194/tc-10-1075-2016,https://doi.org/10.5194/tc-10-1075-2016, 2016
Related subject area
Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Has fire policy decreased the return period of the largest wildfire events in France? A Bayesian assessment based on extreme value theory
Guillaume Evin, Thomas Curt, and Nicolas Eckert
Nat. Hazards Earth Syst. Sci., 18, 2641-2651, https://doi.org/10.5194/nhess-18-2641-2018,https://doi.org/10.5194/nhess-18-2641-2018, 2018
Communicating public avalanche warnings – what works?
Rune V. Engeset, Gerit Pfuhl, Markus Landrø, Andrea Mannberg, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 18, 2537-2559, https://doi.org/10.5194/nhess-18-2537-2018,https://doi.org/10.5194/nhess-18-2537-2018, 2018
Growth of a sinkhole in a seismic zone of the northern Apennines (Italy)
Alessandro La Rosa, Carolina Pagli, Giancarlo Molli, Francesco Casu, Claudio De Luca, Amerino Pieroni, and Giacomo D'Amato Avanzi
Nat. Hazards Earth Syst. Sci., 18, 2355-2366, https://doi.org/10.5194/nhess-18-2355-2018,https://doi.org/10.5194/nhess-18-2355-2018, 2018
Stability assessment of roadbed affected by ground subsidence adjacent to urban railways
Sang-Soo Jeon, Young-Kon Park, and Ki-Young Eum
Nat. Hazards Earth Syst. Sci., 18, 2261-2271, https://doi.org/10.5194/nhess-18-2261-2018,https://doi.org/10.5194/nhess-18-2261-2018, 2018
New experimental diagnostics in combustion of forest fuels: microscale appreciation for a macroscale approach
Dominique Cancellieri, Valérie Leroy-Cancellieri, Xavier Silvani, and Frédéric Morandini
Nat. Hazards Earth Syst. Sci., 18, 1957-1968, https://doi.org/10.5194/nhess-18-1957-2018,https://doi.org/10.5194/nhess-18-1957-2018, 2018
Cited articles
Badoux, A., Andres, N., Techel, F., and Hegg, C.: Natural hazard fatalities in Switzerland from 1946 to 2015, Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, 2016.
Bagli, S. and Schweizer, J.: Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland), Nat. Hazards, 50, 97–108, https://doi.org/10.1007/s11069-008-9322-7, 2009.
Bründl, M., Etter, H.-J., Steiniger, M., Klingler, Ch., Rhyner, J., and Ammann, W. J.: IFKIS – a basis for managing avalanche risk in settlements and on roads in Switzerland, Nat. Hazards Earth Syst. Sci., 4, 257–262, https://doi.org/10.5194/nhess-4-257-2004, 2004.
Bühler, Y., Hüni, A., Christen, M., Meister, R., and Kellerberger, T.: Automated detection and mapping of avalanche deposits using airborne optical remote sensing data, Cold Reg. Sci. Technol., 57, 99–106, https://doi.org/10.1016/j.coldregions.2009.02.007, 2009.
Bühler, Y., Meier, L., and Ginzler, C.: Potential of operational high spatial resolution near-infrared remote sensing instruments for snow surface type mapping, IEEE Geosci. Remote Sens. Lett., 12, 821–825, https://doi.org/10.1109/LGRS.2014.2363237, 2015.
Publications Copernicus
Download
Short summary
In this study, we have focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on aerial imagery using an object-based image analysis (OBIA) approach. We compared the results with manually mapped avalanche polygons, and obtained a user’s accuracy of > 0.9 and a Cohen’s kappa of 0.79–0.85. Testing the method for a larger area of 226.3 km2, we estimated producer’s and user’s accuracies of 0.61 and 0.78, respectively.
In this study, we have focused on automatically detecting avalanches and classifying them into...
Citation
Share