Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
Volume 17, issue 11
Nat. Hazards Earth Syst. Sci., 17, 1923–1938, 2017
https://doi.org/10.5194/nhess-17-1923-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nat. Hazards Earth Syst. Sci., 17, 1923–1938, 2017
https://doi.org/10.5194/nhess-17-1923-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 14 Nov 2017

Research article | 14 Nov 2017

Relationship between the accumulation of sediment storage and debris-flow characteristics in a debris-flow initiation zone, Ohya landslide body, Japan

Fumitoshi Imaizumi et al.
Related authors  
Forest harvesting impacts on microclimate conditions and sediment transport activities in a humid periglacial environment
Fumitoshi Imaizumi, Ryoko Nishii, Kenichi Ueno, and Kousei Kurobe
Hydrol. Earth Syst. Sci., 23, 155–170, https://doi.org/10.5194/hess-23-155-2019,https://doi.org/10.5194/hess-23-155-2019, 2019
Short summary
Related subject area  
Landslides and Debris Flows Hazards
A new approach to mapping landslide hazards: a probabilistic integration of empirical and physically based models in the North Cascades of Washington, USA
Ronda Strauch, Erkan Istanbulluoglu, and Jon Riedel
Nat. Hazards Earth Syst. Sci., 19, 2477–2495, https://doi.org/10.5194/nhess-19-2477-2019,https://doi.org/10.5194/nhess-19-2477-2019, 2019
Short summary
Numerical modeling using an elastoplastic-adhesive discrete element code for simulating hillslope debris flows and calibration against field experiments
Adel Albaba, Massimiliano Schwarz, Corinna Wendeler, Bernard Loup, and Luuk Dorren
Nat. Hazards Earth Syst. Sci., 19, 2339–2358, https://doi.org/10.5194/nhess-19-2339-2019,https://doi.org/10.5194/nhess-19-2339-2019, 2019
Short summary
Simulation of fragmental rockfalls detected using terrestrial laser scans from rock slopes in south-central British Columbia, Canada
Zac Sala, D. Jean Hutchinson, and Rob Harrap
Nat. Hazards Earth Syst. Sci., 19, 2385–2404, https://doi.org/10.5194/nhess-19-2385-2019,https://doi.org/10.5194/nhess-19-2385-2019, 2019
Short summary
The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan'en County (Hubei, China)
Lixia Chen, Zizheng Guo, Kunlong Yin, Dhruba Pikha Shrestha, and Shikuan Jin
Nat. Hazards Earth Syst. Sci., 19, 2207–2228, https://doi.org/10.5194/nhess-19-2207-2019,https://doi.org/10.5194/nhess-19-2207-2019, 2019
Short summary
GIS-based earthquake-triggered-landslide susceptibility mapping with an integrated weighted index model in Jiuzhaigou region of Sichuan Province, China
Yaning Yi, Zhijie Zhang, Wanchang Zhang, Qi Xu, Cai Deng, and Qilun Li
Nat. Hazards Earth Syst. Sci., 19, 1973–1988, https://doi.org/10.5194/nhess-19-1973-2019,https://doi.org/10.5194/nhess-19-1973-2019, 2019
Short summary
Cited articles  
Arattano, M.: On the use of seismic detectors as monitoring and warning system for debris flows, Nat. Hazards, 20, 197–213, 1999.
Arattano, M., Marchi, L., and Cavalli, M.: Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings, Nat. Hazards Earth Syst. Sci., 12, 679–686, https://doi.org/10.5194/nhess-12-679-2012, 2012.
Badoux, A., Graf, C., Ryhner, J., Kuntner, R., and McArdell, B. W.: A debris-flow alarm system for the Alpine Illgraben catchment: design and performance, Nat. Hazards, 49, 517–539, 2008.
Berger, C., McArdell, B. W., and Schlunegger, F.: Sediment transfer patterns at the Illgraben catchment, Switzerland: Implications for the time scales of debris flow activities, Geomorphology, 125, 421–432, 2011a.
Berger, C., McArdell, B. W., and Schlunegger, F.: Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. J. Geophys. Res., 116, F01002, https://doi.org/10.1029/2010JF001722, 2011b.
Publications Copernicus
Download
Short summary
Debris flow characteristics in the initiation zones are poorly understood because of the difficulty in monitoring. We studied the relationship between the flow characteristics and the accumulation conditions of the storage in an initiation zone of debris flow. Our study clarified that both partly and fully saturated flows are important processes in the initiation zones of debris flow. The predominant type of flow varied temporally and was affected by the volume of storage and rainfall patterns.
Debris flow characteristics in the initiation zones are poorly understood because of the...
Citation