Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 17, issue 2 | Copyright
Nat. Hazards Earth Syst. Sci., 17, 205-224, 2017
https://doi.org/10.5194/nhess-17-205-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Feb 2017

Research article | 16 Feb 2017

Development of high-resolution multi-scale modelling system for simulation of coastal-fluvial urban flooding

Joanne Comer, Agnieszka Indiana Olbert, Stephen Nash, and Michael Hartnett Joanne Comer et al.
  • Civil Engineering, College of Engineering and Informatics, Ryan Institute, National University of Ireland, Galway, University Road, Galway, Ireland

Abstract. Urban developments in coastal zones are often exposed to natural hazards such as flooding. In this research, a state-of-the-art, multi-scale nested flood (MSN_Flood) model is applied to simulate complex coastal-fluvial urban flooding due to combined effects of tides, surges and river discharges. Cork city on Ireland's southwest coast is a study case. The flood modelling system comprises a cascade of four dynamically linked models that resolve the hydrodynamics of Cork Harbour and/or its sub-region at four scales: 90, 30, 6 and 2m.

Results demonstrate that the internalization of the nested boundary through the use of ghost cells combined with a tailored adaptive interpolation technique creates a highly dynamic moving boundary that permits flooding and drying of the nested boundary. This novel feature of MSN_Flood provides a high degree of choice regarding the location of the boundaries to the nested domain and therefore flexibility in model application. The nested MSN_Flood model through dynamic downscaling facilitates significant improvements in accuracy of model output without incurring the computational expense of high spatial resolution over the entire model domain. The urban flood model provides full characteristics of water levels and flow regimes necessary for flood hazard identification and flood risk assessment.

Download & links
Publications Copernicus
Download
Short summary
A state-of-the-art nested flood model (MSN_Flood) is applied to simulate complex coastal-fluvial urban flooding in order to critically examine the model’s capability to forecast evolution of urban inundation. The model demonstrates high accuracy of results without incurring the computational expense of high spatial resolution over the entire model domain. MSN_Flood provides full characteristics of water levels and flow regimes necessary for flood hazard identification and flood risk assessment.
A state-of-the-art nested flood model (MSN_Flood) is applied to simulate complex coastal-fluvial...
Citation
Share