Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 17, issue 12 | Copyright
Nat. Hazards Earth Syst. Sci., 17, 2125-2141, 2017
https://doi.org/10.5194/nhess-17-2125-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Dec 2017

Research article | 04 Dec 2017

Impact of asymmetric uncertainties in ice sheet dynamics on regional sea level projections

Renske C. de Winter et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (06 Sep 2017) by Paolo Tarolli
AR by Renske de Winter on behalf of the Authors (08 Sep 2017)  Author's response    Manuscript
ED: Publish as is (15 Sep 2017) by Paolo Tarolli
Publications Copernicus
Download
Short summary
This paper provides a full range of possible future sea levels on a regional scale, since it includes extreme, but possible, contributions to sea level change from dynamical mass loss from the Greenland and Antarctica ice sheets. In contrast to the symmetric distribution used in the IPCC report, it is found that an asymmetric distribution toward high sea level change values locally can increase the mean sea level by 1.8 m this century.
This paper provides a full range of possible future sea levels on a regional scale, since it...
Citation
Share