Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 17, issue 12 | Copyright
Nat. Hazards Earth Syst. Sci., 17, 2181-2198, 2017
https://doi.org/10.5194/nhess-17-2181-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Dec 2017

Research article | 07 Dec 2017

Landslide displacement prediction using the GA-LSSVM model and time series analysis: a case study of Three Gorges Reservoir, China

Tao Wen et al.
Related subject area
Landslides and Debris Flows Hazards
Evaluation of predictive models for post-fire debris flow occurrence in the western United States
Efthymios I. Nikolopoulos, Elisa Destro, Md Abul Ehsan Bhuiyan, Marco Borga, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 18, 2331-2343, https://doi.org/10.5194/nhess-18-2331-2018,https://doi.org/10.5194/nhess-18-2331-2018, 2018
Combining temporal 3-D remote sensing data with spatial rockfall simulations for improved understanding of hazardous slopes within rail corridors
Megan van Veen, D. Jean Hutchinson, David A. Bonneau, Zac Sala, Matthew Ondercin, and Matt Lato
Nat. Hazards Earth Syst. Sci., 18, 2295-2308, https://doi.org/10.5194/nhess-18-2295-2018,https://doi.org/10.5194/nhess-18-2295-2018, 2018
Global fatal landslide occurrence from 2004 to 2016
Melanie J. Froude and David N. Petley
Nat. Hazards Earth Syst. Sci., 18, 2161-2181, https://doi.org/10.5194/nhess-18-2161-2018,https://doi.org/10.5194/nhess-18-2161-2018, 2018
Probabilistic landslide ensemble prediction systems: lessons to be learned from hydrology
Ekrem Canli, Martin Mergili, Benni Thiebes, and Thomas Glade
Nat. Hazards Earth Syst. Sci., 18, 2183-2202, https://doi.org/10.5194/nhess-18-2183-2018,https://doi.org/10.5194/nhess-18-2183-2018, 2018
Natural hazard events affecting transportation networks in Switzerland from 2012 to 2016
Jérémie Voumard, Marc-Henri Derron, and Michel Jaboyedoff
Nat. Hazards Earth Syst. Sci., 18, 2093-2109, https://doi.org/10.5194/nhess-18-2093-2018,https://doi.org/10.5194/nhess-18-2093-2018, 2018
Cited articles
Abdi, M. J. and Giveki, D.: Automatic detection of erythemato-squamous diseases using PSO-SVM based on association rules, Eng. Appl. Artif. Intel., 26, 603–608, https://doi.org/10.1016/j.engappai.2012.01.017, 2013.
Ahmed, B.: Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh, Landslides, 6, 1077–1095, https://doi.org/10.1007/s10346-014-0521-x, 2013.
Ahmadi, M. A., Zendehboudi, S., Lohi, A., Elkamel, A., and Chatzis, I.: Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization, Geophys. Prosp., 61, 582–598, https://doi.org/10.1111/j.1365-2478.2012.01080.x, 2013.
Altınel, B., Can Ganiz, M., and Diri, B.: A corpus-based semantic kernel for text classification by using meaning values of terms, Eng. Appl. Artif. Intel., 43, 54–66, https://doi.org/10.1016/j.engappai.2015.03.015, 2015.
Brockwell, P. J. and Davis, R. A.: Time series: theory and methods, Springer Science & Business Media, 340–341, 2013.
Publications Copernicus
Download
Short summary
Landslide displacement prediction is one of the focuses of landslide research. In this paper, time series analysis was used to decompose the cumulative displacement of landslide into a trend component and a periodic component. Then LSSVM model and GA were used to predict landslide displacement. The results show that the GA-LSSVM model can be effectively used to predict landslide displacement and reflect the corresponding relationships between the major influencing factors and the displacement.
Landslide displacement prediction is one of the focuses of landslide research. In this paper,...
Citation
Share