Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 17, issue 12 | Copyright
Nat. Hazards Earth Syst. Sci., 17, 2245-2270, 2017
https://doi.org/10.5194/nhess-17-2245-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 12 Dec 2017

Research article | 12 Dec 2017

Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios

Ario Muhammad et al.
Related authors
Epistemic uncertainties and natural hazard risk assessment. 1. A review of different natural hazard areas
Keith J. Beven, Susana Almeida, Willy P. Aspinall, Paul D. Bates, Sarka Blazkova, Edoardo Borgomeo, Katsu Goda, Jim W. Hall, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, David B. Stephenson, Thorsten Wagener, Matt Watson, and Kate L. Wilkins
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-250,https://doi.org/10.5194/nhess-2017-250, 2017
Revised manuscript accepted for NHESS
Epistemic uncertainties and natural hazard risk assessment. 2. What should constitute good practice?
Keith J. Beven, Willy P. Aspinall, Paul D. Bates, Eduardo Borgomeo, Katsu Goda, Jim W. Hall, Trevor Page, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, Thorsten Wagener, and Matt Watson
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2017-251,https://doi.org/10.5194/nhess-2017-251, 2017
Revised manuscript accepted for NHESS
Tsunami hazard warning and risk prediction based on inaccurate earthquake source parameters
Katsuichiro Goda and Kamilla Abilova
Nat. Hazards Earth Syst. Sci., 16, 577-593, https://doi.org/10.5194/nhess-16-577-2016,https://doi.org/10.5194/nhess-16-577-2016, 2016
Epistemic uncertainties and natural hazard risk assessment – Part 2: Different natural hazard areas
K. J. Beven, S. Almeida, W. P. Aspinall, P. D. Bates, S. Blazkova, E. Borgomeo, K. Goda, J. C. Phillips, M. Simpson, P. J. Smith, D. B. Stephenson, T. Wagener, M. Watson, and K. L. Wilkins
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2015-295,https://doi.org/10.5194/nhess-2015-295, 2016
Publication in NHESS not foreseen
Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of the issues
K. J. Beven, W. P. Aspinall, P. D. Bates, E. Borgomeo, K. Goda, J. W. Hall, T. Page, J. C. Phillips, J. T. Rougier, M. Simpson, D. B. Stephenson, P. J. Smith, T. Wagener, and M. Watson
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-7333-2015,https://doi.org/10.5194/nhessd-3-7333-2015, 2015
Publication in NHESS not foreseen
Related subject area
Sea, Ocean and Coastal Hazards
Tree-based mesh-refinement GPU-accelerated tsunami simulator for real-time operation
Marlon Arce Acuña and Takayuki Aoki
Nat. Hazards Earth Syst. Sci., 18, 2561-2602, https://doi.org/10.5194/nhess-18-2561-2018,https://doi.org/10.5194/nhess-18-2561-2018, 2018
Extreme water levels, waves and coastal impacts during a severe tropical cyclone in northeastern Australia: a case study for cross-sector data sharing
Thomas R. Mortlock, Daryl Metters, Joshua Soderholm, John Maher, Serena B. Lee, Geoffrey Boughton, Nigel Stewart, Elisa Zavadil, and Ian D. Goodwin
Nat. Hazards Earth Syst. Sci., 18, 2603-2623, https://doi.org/10.5194/nhess-18-2603-2018,https://doi.org/10.5194/nhess-18-2603-2018, 2018
A comparison of a two-dimensional depth-averaged flow model and a three-dimensional RANS model for predicting tsunami inundation and fluid forces
Xinsheng Qin, Michael Motley, Randall LeVeque, Frank Gonzalez, and Kaspar Mueller
Nat. Hazards Earth Syst. Sci., 18, 2489-2506, https://doi.org/10.5194/nhess-18-2489-2018,https://doi.org/10.5194/nhess-18-2489-2018, 2018
Paleotsunami deposits along the coast of Egypt correlate with historical earthquake records of eastern Mediterranean
Asem Salama, Mustapha Meghraoui, Mohamed El Gabry, Said Maouche, Moussa Hesham Hussein, and Ibrahim Korrat
Nat. Hazards Earth Syst. Sci., 18, 2203-2219, https://doi.org/10.5194/nhess-18-2203-2018,https://doi.org/10.5194/nhess-18-2203-2018, 2018
Development and application of a tsunami fragility curve of the 2015 tsunami in Coquimbo, Chile
Rafael Aránguiz, Luisa Urra, Ryo Okuwaki, and Yuji Yagi
Nat. Hazards Earth Syst. Sci., 18, 2143-2160, https://doi.org/10.5194/nhess-18-2143-2018,https://doi.org/10.5194/nhess-18-2143-2018, 2018
Cited articles
Abrahamson, N., Gregor, N., and Addo, K.: BC hydro ground motion prediction equations for subduction earthquakes, Earthq. Spectra, 32, 23–44, https://doi.org/10.1193/051712EQS188MR, 2016.
Applied Technology Council: Seismic Evaluation and Retrofit of Concrete Buildings, Report ATC 40, Virginia, USA, November 1996.
ASCE (American Society of Civil Engineers): Minimum design loads for buildings and other structures, American Society of Civil Engineers, Virginia, USA, 2006.
Aulia, Y. G.: Capacity assessment of tsunami evacuation shelters in Padang city, Thesis, Universitas Andalas, Padang, Indonesia, 2016 (in Bahasa).
Baker, J. W. and Cornell, C. A.: Correlation of response spectral values for multicomponent ground motions, B. Seismol. Soc. Am., 96, 215–227, 2006.
Publications Copernicus
Download
Short summary
This study develops tsunami evacuation plan in Padang, Indonesia, known as one of the most affected areas due to the future tsunami events generated from the Sunda subduction zone. The evacuation plan is constructed using probabilistic earthquake source modelling considering all the uncertainty of the future events. The results show that probabilistic approach may produce comprehensive tsunami hazard assessments which can be used for building more reliable and robust evacuation plans.
This study develops tsunami evacuation plan in Padang, Indonesia, known as one of the most...
Citation
Share