Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
Volume 17, issue 2
Nat. Hazards Earth Syst. Sci., 17, 225–241, 2017
https://doi.org/10.5194/nhess-17-225-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Risk and uncertainty estimation in natural hazards

Nat. Hazards Earth Syst. Sci., 17, 225–241, 2017
https://doi.org/10.5194/nhess-17-225-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Feb 2017

Research article | 21 Feb 2017

Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change

Susana Almeida et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish as is (31 Jan 2017) by Ian Main
Publications Copernicus
Download
Short summary
Landslides threaten communities globally, yet predicting their occurrence is challenged by uncertainty about slope properties and climate change. We present an approach to identify the dominant drivers of slope instability and the critical thresholds at which slope failure may occur. This information helps decision makers to target data acquisition to improve landslide predictability, and supports policy development to reduce landslide occurrence and impacts in highly uncertain environments.
Landslides threaten communities globally, yet predicting their occurrence is challenged by...
Citation