Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.102 IF 3.102
  • IF 5-year value: 3.284 IF 5-year
    3.284
  • CiteScore value: 5.1 CiteScore
    5.1
  • SNIP value: 1.37 SNIP 1.37
  • IPP value: 3.21 IPP 3.21
  • SJR value: 1.005 SJR 1.005
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 90 Scimago H
    index 90
  • h5-index value: 42 h5-index 42
Volume 17, issue 2
Nat. Hazards Earth Syst. Sci., 17, 225–241, 2017
https://doi.org/10.5194/nhess-17-225-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Risk and uncertainty estimation in natural hazards

Nat. Hazards Earth Syst. Sci., 17, 225–241, 2017
https://doi.org/10.5194/nhess-17-225-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 Feb 2017

Research article | 21 Feb 2017

Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change

Susana Almeida et al.

Viewed

Total article views: 3,268 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,707 1,502 59 3,268 61 72
  • HTML: 1,707
  • PDF: 1,502
  • XML: 59
  • Total: 3,268
  • BibTeX: 61
  • EndNote: 72
Views and downloads (calculated since 12 Sep 2016)
Cumulative views and downloads (calculated since 12 Sep 2016)

Viewed (geographical distribution)

Total article views: 3,041 (including HTML, PDF, and XML) Thereof 3,023 with geography defined and 18 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 07 Jul 2020
Publications Copernicus
Download
Short summary
Landslides threaten communities globally, yet predicting their occurrence is challenged by uncertainty about slope properties and climate change. We present an approach to identify the dominant drivers of slope instability and the critical thresholds at which slope failure may occur. This information helps decision makers to target data acquisition to improve landslide predictability, and supports policy development to reduce landslide occurrence and impacts in highly uncertain environments.
Landslides threaten communities globally, yet predicting their occurrence is challenged by...
Citation