Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Nat. Hazards Earth Syst. Sci., 17, 2271-2287, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
13 Dec 2017
Sea-level rise along the Emilia-Romagna coast (Northern Italy) in 2100: scenarios and impacts
Luisa Perini1, Lorenzo Calabrese1, Paolo Luciani1, Marco Olivieri2, Gaia Galassi3, and Giorgio Spada3 1Servizio Geologico, Sismico e dei Suoli, Regione Emilia-Romagna, Bologna, Italy
2Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
3Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino Carlo Bo, Urbino, Italy
Abstract. As a consequence of climate change and land subsidence, coastal zones are directly impacted by sea-level rise. In some particular areas, the effects on the ecosystem and urbanisation are particularly enhanced. We focus on the Emilia-Romagna (E-R) coastal plain in Northern Italy, bounded by the Po river mouth to the north and by the Apennines to the south. The plain is  ∼ 130 km long and is characterised by wide areas below mean sea level, in part made up of reclaimed wetlands. In this context, several morphodynamic factors make the shore and back shore unstable. During next decades, the combined effects of land subsidence and of the sea-level rise as a result of climate change are expected to enhance the shoreline instability, leading to further retreat. The consequent loss of beaches would impact the economy of the region, which is tightly connected with tourism infrastructures. Furthermore, the loss of wetlands and dunes would threaten the ecosystem, which is crucial for the preservation of life and the environment. These specific conditions show the importance of a precise definition of the possible local impacts of the ongoing and future climate variations. The aim of this work is the characterisation of vulnerability in different sectors of the coastal plain and the recognition of the areas in which human intervention is urgently required. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) sea-level scenarios are merged with new high-resolution terrain models, current data for local subsidence and predictions of the flooding model in_CoastFlood in order to develop different scenarios for the impact of sea-level rise projected to year 2100. First, the potential land loss due to the combined effect of subsidence and sea-level rise is extrapolated. Second, the increase in floodable areas as a result of storm surges is quantitatively determined. The results are expected to support the regional mitigation and adaptation strategies designed in response to climate change.

Citation: Perini, L., Calabrese, L., Luciani, P., Olivieri, M., Galassi, G., and Spada, G.: Sea-level rise along the Emilia-Romagna coast (Northern Italy) in 2100: scenarios and impacts, Nat. Hazards Earth Syst. Sci., 17, 2271-2287,, 2017.
Publications Copernicus
Short summary
The Emilia-Romagna coastal plain is a low-land, highly urbanised area that will be significantly impacted by climate change. To plan adequate mitigation measures, reliable sea-level scenarios are needed. Here we suggests a method for evaluating the combined effects of sea-level rise and land subsidence in the year 2100, in terms of the increase in floodable areas during sea storms. The results allow for a regional assessment and indicate a significant local variability in the factors involved.
The Emilia-Romagna coastal plain is a low-land, highly urbanised area that will be significantly...