Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 17, issue 12 | Copyright
Nat. Hazards Earth Syst. Sci., 17, 2301-2312, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Dec 2017

Research article | 13 Dec 2017

Real-time prediction of rain-triggered lahars: incorporating seasonality and catchment recovery

Robbie Jones et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (further review by Editor) (07 Sep 2017) by Thomas Glade
AR by Robbie Jones on behalf of the Authors (16 Sep 2017)  Author's response    Manuscript
ED: Publish as is (21 Oct 2017) by Thomas Glade
Publications Copernicus
Short summary
Rain-triggered lahars are significant secondary hazards at volcanoes where pyroclastic material is exposed to rainfall. Lahar risk mitigation typically relies upon ground-based flow detection or observation; however this study uses rainfall data and instrumental lahar records from the Belham valley, Montserrat, to devise new rain-triggered lahar prediction tools. These tools demonstrate the potential to effectively forecast lahars in real time, even in areas featuring strongly seasonal climates.
Rain-triggered lahars are significant secondary hazards at volcanoes where pyroclastic material...