Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 17, issue 12 | Copyright
Nat. Hazards Earth Syst. Sci., 17, 2335-2350, 2017
https://doi.org/10.5194/nhess-17-2335-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Dec 2017

Research article | 19 Dec 2017

Structural analysis of S-wave seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault zone

Sonja H. Wadas et al.
Download
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Peer review completion
AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (08 Nov 2017) by Mario Parise
AR by Sonja Wadas on behalf of the Authors (09 Nov 2017)  Author's response    Manuscript
ED: Publish as is (09 Nov 2017) by Mario Parise
Publications Copernicus
Download
Short summary
In 2010 a sinkhole opened up in the urban area of Schmalkalden, Germany. Shear-wave reflection seismic profiles were carried out around the sinkhole to investigate the reasons for the collapse. A strike-slip fault and a fracture network were identified that serve as fluid pathways for water-leaching soluble rocks near the surface. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.
In 2010 a sinkhole opened up in the urban area of Schmalkalden, Germany. Shear-wave reflection...
Citation
Share