Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Nat. Hazards Earth Syst. Sci., 17, 671-683, 2017
https://doi.org/10.5194/nhess-17-671-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
11 May 2017
Numerical modeling of the 2013 meteorite entry in Lake Chebarkul, Russia
Andrey Kozelkov1,2, Andrey Kurkin2, Efim Pelinovsky2,3, Vadim Kurulin1, and Elena Tyatyushkina1 1Russian Federal Nuclear Center, All-Russian Research Institute of Experimental Physics, Sarov, 607189, Russia
2Nizhny Novgorod State Technical University n. a. R. E. Alekseev, Nizhny Novgorod, 603950, Russia
3Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
Abstract. The results of the numerical simulation of possible hydrodynamic perturbations in Lake Chebarkul (Russia) as a consequence of the meteorite fall of 2013 (15 February) are presented. The numerical modeling is based on the Navier–Stokes equations for a two-phase fluid. The results of the simulation of a meteorite entering the water at an angle of 20° are given. Numerical experiments are carried out both when the lake is covered with ice and when it is not. The estimation of size of the destructed ice cover is made. It is shown that the size of the observed ice hole at the place of the meteorite fall is in good agreement with the theoretical predictions, as well as with other estimates. The heights of tsunami waves generated by a small meteorite entering the lake are small enough (a few centimeters) according to the estimations. However, the danger of a tsunami of meteorite or asteroid origin should not be underestimated.

Citation: Kozelkov, A., Kurkin, A., Pelinovsky, E., Kurulin, V., and Tyatyushkina, E.: Numerical modeling of the 2013 meteorite entry in Lake Chebarkul, Russia, Nat. Hazards Earth Syst. Sci., 17, 671-683, https://doi.org/10.5194/nhess-17-671-2017, 2017.
Publications Copernicus
Download
Short summary
On 15 February 2013 at 09:20 local time in the vicinity of the city of Chelyabinsk, Russia, a meteorite exploded and collapsed in the earth's atmosphere as a result of inhibition. Small fragments of the meteorite came down on the Chelyabinsk region. The results of the numerical modeling of the processes that began in the water after the meteorite entered Lake Chebarkul in the framework of the Navier–Stokes equations are presented in this paper.
On 15 February 2013 at 09:20 local time in the vicinity of the city of Chelyabinsk, Russia, a...
Share