Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year
  • CiteScore value: 2.43 CiteScore
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 73 Scimago H
    index 73
Volume 17, issue 6 | Copyright
Nat. Hazards Earth Syst. Sci., 17, 845-860, 2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 09 Jun 2017

Research article | 09 Jun 2017

GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy)

Federica Ferrigno, Giovanni Gigli, Riccardo Fanti, Emanuele Intrieri, and Nicola Casagli Federica Ferrigno et al.
  • Department of Earth Sciences, University of Florence, Via La Pira 4, Florence, Italy

Abstract. On 10 March 2010, because of the heavy rainfall in the preceding days, the Montaguto landslide (Southern Italy) reactivated, affecting both state road 90 Delle Puglie and the Rome–Bari railway. A similar event occurred on May 2005 and on September 2009. As a result, the National Civil Protection Department (DPC) started an accurate monitoring and analysis program. A monitoring project using the GB-InSAR (ground-based interferometric synthetic aperture radar) system was emplaced to investigate the landslide kinematics, plan urgent safety measures for risk mitigation and design long-term stabilization work.

Here, we present the GB-InSAR monitoring system results and its applications in the observational method (OM) approach. GB-InSAR is an established instrument for long-term campaigns aimed at early warning and monitoring during construction works. Our paper further develops these aspects in that it highlights how the OM based on the GB-InSAR technique can produce savings in terms of cost and time in engineering projects without compromising safety. This study focuses on the key role played by the monitoring activities during the design and planning activities, with special reference to the emergency phase.

Publications Copernicus
Short summary
This paper represents one of the main outcomes of a 3-year PhD program at the Earth Sciences Department of the University of Firenze (Centre of Competence of the Italian Civil Protection for geohazards). The main objectives of this paper were to investigate the landslide kinematics through the monitoring activity using GB-InSAR technology and to validate the stabilization works effectiveness using the coupled action of the GB-InSAR and the observational method (OM).
This paper represents one of the main outcomes of a 3-year PhD program at the Earth Sciences...