Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 17, issue 6 | Copyright
Nat. Hazards Earth Syst. Sci., 17, 861-879, 2017
https://doi.org/10.5194/nhess-17-861-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 13 Jun 2017

Research article | 13 Jun 2017

High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

Arnau Folch et al.
Related authors
Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors
Alejandro Marti and Arnau Folch
Atmos. Chem. Phys., 18, 4019-4038, https://doi.org/10.5194/acp-18-4019-2018,https://doi.org/10.5194/acp-18-4019-2018, 2018
Numerical simulations of windblown dust over complex terrain: the Fiambalá Basin episode in June 2015
Leonardo A. Mingari, Estela A. Collini, Arnau Folch, Walter Báez, Emilce Bustos, María Soledad Osores, Florencia Reckziegel, Peter Alexander, and José G. Viramonte
Atmos. Chem. Phys., 17, 6759-6778, https://doi.org/10.5194/acp-17-6759-2017,https://doi.org/10.5194/acp-17-6759-2017, 2017
Volcanic ash modeling with the online NMMB-MONARCH-ASH v1.0 model: model description, case simulation, and evaluation
Alejandro Marti, Arnau Folch, Oriol Jorba, and Zavisa Janjic
Atmos. Chem. Phys., 17, 4005-4030, https://doi.org/10.5194/acp-17-4005-2017,https://doi.org/10.5194/acp-17-4005-2017, 2017
FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation
A. Folch, A. Costa, and G. Macedonio
Geosci. Model Dev., 9, 431-450, https://doi.org/10.5194/gmd-9-431-2016,https://doi.org/10.5194/gmd-9-431-2016, 2016
A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes – Part 1: Hazard assessment
S. Biass, C. Scaini, C. Bonadonna, A. Folch, K. Smith, and A. Höskuldsson
Nat. Hazards Earth Syst. Sci., 14, 2265-2287, https://doi.org/10.5194/nhess-14-2265-2014,https://doi.org/10.5194/nhess-14-2265-2014, 2014
Related subject area
Volcanic Hazards
A retrospective study of the pre-eruptive unrest on El Hierro (Canary Islands): implications of seismicity and deformation in the short-term volcanic hazard assessment
Stefania Bartolini, Carmen López, Laura Becerril, Rosa Sobradelo, and Joan Martí
Nat. Hazards Earth Syst. Sci., 18, 1759-1770, https://doi.org/10.5194/nhess-18-1759-2018,https://doi.org/10.5194/nhess-18-1759-2018, 2018
An adaptive semi-Lagrangian advection model for transport of volcanic emissions in the atmosphere
Elena Gerwing, Matthias Hort, Jörn Behrens, and Bärbel Langmann
Nat. Hazards Earth Syst. Sci., 18, 1517-1534, https://doi.org/10.5194/nhess-18-1517-2018,https://doi.org/10.5194/nhess-18-1517-2018, 2018
Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters
Natalie J. Harvey, Nathan Huntley, Helen F. Dacre, Michael Goldstein, David Thomson, and Helen Webster
Nat. Hazards Earth Syst. Sci., 18, 41-63, https://doi.org/10.5194/nhess-18-41-2018,https://doi.org/10.5194/nhess-18-41-2018, 2018
Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands)
Laura Becerril, Joan Martí, Stefania Bartolini, and Adelina Geyer
Nat. Hazards Earth Syst. Sci., 17, 1145-1157, https://doi.org/10.5194/nhess-17-1145-2017,https://doi.org/10.5194/nhess-17-1145-2017, 2017
Examining the impact of lahars on buildings using numerical modelling
Stuart R. Mead, Christina Magill, Vincent Lemiale, Jean-Claude Thouret, and Mahesh Prakash
Nat. Hazards Earth Syst. Sci., 17, 703-719, https://doi.org/10.5194/nhess-17-703-2017,https://doi.org/10.5194/nhess-17-703-2017, 2017
Cited articles
Aka, F. T. and Yokoyama, T.: Current status of the debate about the age of Lake Nyos dam (Cameroon) and its bearing on potential flood hazards, Nat. Hazards, 65, 875–885, https://doi.org/10.1007/s11069-012-0401-4, 2013.
Apsley, D. and Castro, I.: A limited-length-scale k-ϵ model for the neutral and stably-stratified atmospheric boundary layer, Bound.-Lay. Meteorol., 83, 75–98, https://doi.org/10.1023/A:1000252210512, 1997.
Avila, M., Folch, A., Houzeaux, G., Eguzkitza, B., Prieto, L., and Cabezon, D.: A Parallel CFD Model for Wind Farms, Procedia Comput. Sci., 18, 2157–2166, https://doi.org/10.1016/j.procs.2013.05.386, 2013.
Baxter, P. and Kapila, M.: Acute health impact of the gas release at Lake Nyos, Cameroon, 1986, J. Volcanol. Geoth. Res., 39, 265–275, https://doi.org/10.1016/0377-0273(89)90064-4, 1989.
Britter, R.: Atmospheric dispersion of dense gases, Annu. Rev. Fluid Mech., 2, 317–344, https://doi.org/10.1146/annurev.fl.21.010189.001533, 1989.
Publications Copernicus
Download
Short summary
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behavior, potentially leading to inaccurate model results if not captured by coarser-scale simulations. We introduce a methodology for microscale wind field characterization and validate it using, as a test case, the CO2 gas dispersal from 1986 Lake Nyos eruption.
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding...
Citation
Share