Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year
    2.693
  • CiteScore value: 2.43 CiteScore
    2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 73 Scimago H
    index 73
Volume 17, issue 6
Nat. Hazards Earth Syst. Sci., 17, 971-992, 2017
https://doi.org/10.5194/nhess-17-971-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nat. Hazards Earth Syst. Sci., 17, 971-992, 2017
https://doi.org/10.5194/nhess-17-971-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 30 Jun 2017

Research article | 30 Jun 2017

Sensitivity analysis and calibration of a dynamic physically based slope stability model

Thomas Zieher et al.
Related authors  
MULTITEMPORAL ANALYSIS OF OBJECTS IN 3D POINT CLOUDS FOR LANDSLIDE MONITORING
A. Mayr, M. Rutzinger, and C. Geitner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 691-697, https://doi.org/10.5194/isprs-archives-XLII-2-691-2018,https://doi.org/10.5194/isprs-archives-XLII-2-691-2018, 2018
SENSOR- AND SCENE-GUIDED INTEGRATION OF TLS AND PHOTOGRAMMETRIC POINT CLOUDS FOR LANDSLIDE MONITORING
T. Zieher, I. Toschi, F. Remondino, M. Rutzinger, Ch. Kofler, A. Mejia-Aguilar, and R. Schlögel
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 1243-1250, https://doi.org/10.5194/isprs-archives-XLII-2-1243-2018,https://doi.org/10.5194/isprs-archives-XLII-2-1243-2018, 2018
Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?
Heidelinde Trimmel, Philipp Weihs, David Leidinger, Herbert Formayer, Gerda Kalny, and Andreas Melcher
Hydrol. Earth Syst. Sci., 22, 437-461, https://doi.org/10.5194/hess-22-437-2018,https://doi.org/10.5194/hess-22-437-2018, 2018
Short summary
A strategy for GIS-based 3-D slope stability modelling over large areas
M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti
Geosci. Model Dev., 7, 2969-2982, https://doi.org/10.5194/gmd-7-2969-2014,https://doi.org/10.5194/gmd-7-2969-2014, 2014
Short summary
Related subject area  
Landslides and Debris Flows Hazards
A susceptibility-based rainfall threshold approach for landslide occurrence
Elise Monsieurs, Olivier Dewitte, and Alain Demoulin
Nat. Hazards Earth Syst. Sci., 19, 775-789, https://doi.org/10.5194/nhess-19-775-2019,https://doi.org/10.5194/nhess-19-775-2019, 2019
Short summary
Development and validation of the terrain stability model for assessing landslide instability during heavy rain infiltration
Alfonso Gutiérrez-Martín, Miguel Ángel Herrada, José Ignacio Yenes, and Ricardo Castedo
Nat. Hazards Earth Syst. Sci., 19, 721-736, https://doi.org/10.5194/nhess-19-721-2019,https://doi.org/10.5194/nhess-19-721-2019, 2019
Short summary
Invited perspectives: Mountain roads in Nepal at a new crossroads
Karen Sudmeier-Rieux, Brian G. McAdoo, Sanjaya Devkota, Purna Chandra Lal Rajbhandari, John Howell, and Shuva Sharma
Nat. Hazards Earth Syst. Sci., 19, 655-660, https://doi.org/10.5194/nhess-19-655-2019,https://doi.org/10.5194/nhess-19-655-2019, 2019
Short summary
Changes in ground deformation prior to and following a large urban landslide in La Paz, Bolivia, revealed by advanced InSAR
Nicholas J. Roberts, Bernhard T. Rabus, John J. Clague, Reginald L. Hermanns, Marco-Antonio Guzmán, and Estela Minaya
Nat. Hazards Earth Syst. Sci., 19, 679-696, https://doi.org/10.5194/nhess-19-679-2019,https://doi.org/10.5194/nhess-19-679-2019, 2019
Short summary
Application of the Levenburg–Marquardt back propagation neural network approach for landslide risk assessments
Junnan Xiong, Ming Sun, Hao Zhang, Weiming Cheng, Yinghui Yang, Mingyuan Sun, Yifan Cao, and Jiyan Wang
Nat. Hazards Earth Syst. Sci., 19, 629-653, https://doi.org/10.5194/nhess-19-629-2019,https://doi.org/10.5194/nhess-19-629-2019, 2019
Short summary
Cited articles  
Alvioli, M. and Baum, R.: Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface, Environ. Modell. Softw., 81, 122–135, https://doi.org/10.1016/j.envsoft.2016.04.002, 2016.
Amann, G., Schennach, R., Kessler, J., Maier, B., and Terzer, S.: Handbuch der Vorarlberger Waldgesellschaften, vol. 2, Amt der Vorarlberger Landesregierung, Abteilung Forstwesen, 2014.
Andrecs, P., Markart, G., Lang, E., Hagen, K., Kohl, B., and Bauer, W.: Untersuchung der Rutschungsprozesse vom Mai 1999 im Laternsertal (Vorarlberg), BFW Berichte, 127, 55–87, 2002.
Bathurst, J. C., Moretti, G., El-Hames, A., Moaven-Hashemi, A., and Burton, A.: Scenario modelling of basin-scale, shallow landslide sediment yield, Valsassina, Italian Southern Alps, Nat. Hazards Earth Syst. Sci., 5, 189–202, https://doi.org/10.5194/nhess-5-189-2005, 2005.
Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS- A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0, Tech. rep., US Geological Survey, 2008.
Publications Copernicus
Download
Short summary
At catchment scale, it is challenging to provide the required input parameters for physically based slope stability models. In the present study, the parameterization of such a model is optimized against observed shallow landslides during two triggering rainfall events. With the resulting set of parameters the model reproduces the location and the triggering timing of most observed landslides. Based on that, potential effects of increasing precipitation intensity on slope stability are assessed.
At catchment scale, it is challenging to provide the required input parameters for physically...
Citation