Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 18, issue 8 | Copyright
Nat. Hazards Earth Syst. Sci., 18, 2111-2125, 2018
https://doi.org/10.5194/nhess-18-2111-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 Aug 2018

Research article | 08 Aug 2018

Development of fragility curves for road bridges exposed to volcanic lahars

Joaquín Dagá1,4, Alondra Chamorro1,3, Hernán de Solminihac1,4, and Tomás Echaveguren2,3 Joaquín Dagá et al.
  • 1Department of Construction Engineering and Management, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
  • 2Civil Engineering Department, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
  • 3National Research Center for Integrated Natural Disaster Management (CIGIDEN), CONICYT/FONDAP/15110017, Santiago, Chile
  • 4Latin American Center of Economic and Social Policies UC (CLAPES UC), Santiago, Chile

Abstract. One of the main volcanic processes affecting road bridges are lahars, which are flows of water and volcanic material running down the slopes of a volcano and river valleys. Several studies have evidenced the effects of other volcanic processes on road infrastructure; however, limited information is available about the effects of lahars on bridges. In this paper, bridge failure models due to lahars are proposed and, based on these, fragility curves are developed. Failure models consider the limit state of pier and abutment overturning, and deck sliding caused by lahars. Existing physical models are used to stochastically characterize lahar loads and overturning momentum on bridges. Monte Carlo simulations are applied to quantify the probability of bridge failure given by different lahar depths. Fragility curves of bridges are finally parameterized by maximum likelihood estimation, assuming a cumulative log-normal distribution. Bridge failure models are empirically evaluated using data on 15 bridges that were affected by lahars in the last 50 years. Developed models suggest that decks fail mainly due to pier and/or abutment overturning, rather than deck-sliding forces. Moreover, it is concluded that bridges with piers are more vulnerable to lahars than bridges without piers. Further research is being conducted to develop an application tool to simulate the effects of expected lahars on exposed bridges of a road network.

Download & links
Publications Copernicus
Download
Short summary
One of the main volcanic processes affecting road bridges are lahars, which are flows of water and volcanic material running down the slopes of a volcano. In this paper, bridge failure models due to lahars are proposed and, based on these, fragility curves are developed. Fragility curves are parameterized by maximum likelihood estimation, assuming a cumulative log-normal distribution. Bridge failure models are empirically evaluated using data of 15 bridges that were affected by lahars.
One of the main volcanic processes affecting road bridges are lahars, which are flows of water...
Citation
Share