Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 18, issue 9 | Copyright
Nat. Hazards Earth Syst. Sci., 18, 2355-2366, 2018
https://doi.org/10.5194/nhess-18-2355-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Sep 2018

Research article | 12 Sep 2018

Growth of a sinkhole in a seismic zone of the northern Apennines (Italy)

Alessandro La Rosa1,2, Carolina Pagli2, Giancarlo Molli2, Francesco Casu3, Claudio De Luca3, Amerino Pieroni4, and Giacomo D'Amato Avanzi2 Alessandro La Rosa et al.
  • 1Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, 50121 Florence, Italy
  • 2Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria, 53, 56126 Pisa, Italy
  • 3CNR, Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell'Ambiente (IREA-CNR), Via Diocleziano, 328, 80124 Naples, Italy
  • 4Pro.Geo. s.r.l. Via Valmaira, 14, 55032, Castelnuovo di Garfagnana, Italy

Abstract. Sinkhole collapse is a major hazard causing substantial social and economic losses. However, the surface deformations and sinkhole evolution are rarely recorded, as these sites are known mainly after a collapse, making the assessment of sinkhole-related hazard challenging. Furthermore, more than 40% of the sinkholes of Italy are in seismically hazardous zones; it remains unclear whether seismicity may trigger sinkhole collapse. Here we use a multidisciplinary data set of InSAR, surface mapping and historical records of sinkhole activity to show that the Prà di Lama lake is a long-lived sinkhole that was formed in an active fault zone and grew through several events of unrest characterized by episodic subsidence and lake-level changes. Moreover, InSAR shows that continuous aseismic subsidence at rates of up to 7.1mmyr−1 occurred during 2003–2008, between events of unrest. Earthquakes on the major faults near the sinkhole do not trigger sinkhole activity but low-magnitude earthquakes at 4–12km depth occurred during sinkhole unrest in 1996 and 2016. We interpret our observations as evidence of seismic creep at depth causing fracturing and ultimately leading to the formation and growth of the Prà di Lama sinkhole.

Publications Copernicus
Download
Short summary
We use a multi-disciplinary dataset to show that the Prà di Lama sinkhole was created through several episodic events of unrest. We suggest that fluid circulation along an active fault zone, accompanied by localized seismic creep, control the growth of the Prà di Lama deep-sited sinkhole. Conversely, a connection between events of unrest and the largest earthquakes in northern Tuscany is not identified. This paper provides new insights into the evolution of sinkholes in active fault zones.
We use a multi-disciplinary dataset to show that the Prà di Lama sinkhole was created through...
Citation
Share