Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 18, issue 9 | Copyright
Nat. Hazards Earth Syst. Sci., 18, 2561-2602, 2018
https://doi.org/10.5194/nhess-18-2561-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 Sep 2018

Research article | 21 Sep 2018

Tree-based mesh-refinement GPU-accelerated tsunami simulator for real-time operation

Marlon Arce Acuña1 and Takayuki Aoki2 Marlon Arce Acuña and Takayuki Aoki
  • 1Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1-i7-3, Ookayama, Meguro, Tokyo, Japan
  • 2Global Scientific Information and Computing Center, Tokyo Institute of Technology, 2-12-1-i7-3, Ookayama, Meguro, Tokyo, Japan

Abstract. This paper presents a fast and accurate tsunami real-time operational model to compute across ocean-wide simulations completely on GPU (graphics processing unit). The spherical shallow water equations are solved using the method of characteristics and upwind cubic interpolation to provide high accuracy and stability. A customized, user interactive, tree-based mesh-refinement method is implemented based on distance from the coast and focal areas to generate a memory-efficient domain with resolutions of up to 50m. Three specialized and optimized GPU kernels (Wet, Wall and Inundation) are developed to compute the domain block mesh. Multi-GPU is used to further speed up the computation, and a weighted Hilbert space-filling curve is used to produce a balanced workload. Hindcasting of the 2004 Indonesian tsunami is presented to validate and compare the agreement of the arrival times and main peaks at several gauges. Inundation maps are also produced for Kamala and Hambantota to validate the accuracy of our model. Test runs on three Tesla P100 cards on Tsubame 3.0 could fully simulate 10h in just under 10min wall-clock time.

Publications Copernicus
Download
Short summary
Tsunamis like those in Indonesia in 2004 and Japan in 2011 have shown like never before the destructive power of this natural disaster. This highlighted the importance of fast and accurate simulations for forecasting. We present a fully GPU-accelerated tsunami model for large domains that delivers results within minutes with high accuracy and efficient resource use. By using just three GPUs, results for the Indian Ocean were obtained in 15 min. This allows for fast evacuation and risk decisions.
Tsunamis like those in Indonesia in 2004 and Japan in 2011 have shown like never before the...
Citation
Share