Abadie, S. D., Morichon, S. D., Grilli, S., and Glockner, S.: Numerical
simulation of waves generated by landslides using a multiple-fluid Navier–Stokes
model, Coast. Eng., 24, 779–794, 2010.

Abadie, S. D., Harris, J. C., Grilli, S. T., and Fabre, R.: Numerical modeling
of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano
(La Palma, CanaryIslands): Tsunami source and near field effects, J. Geophys.
Res., 117, 50–30, 2012.

Acuna, M. A. and Takayuki, A.: TRITON-G, available at: https://osf.io/fydz8/, 2017.

Arcas, D. and Titov, V.: Sumatra tsunami: lessons from modeling, Surv. Geophys.,
27, 679–705, 2006.

Babeyko, A.: Fast Tsunami Simulation Tool for Early Warning, available at:
https://docs.gempa.de/toast/current/apps/easywave.html (last access: 13 September 2018), 2017.

Berger, M. J. and Colella, P: Local Adaptive Mesh Refinement for Shock
Hydrodynamics, J. Comp. Phys., 82, 64–84, 1989.

Berger, M. and LeVeque, R.: Adaptive mesh refinement using wave-propagation
algorithms for hyperbolic systems, SIAM J. Numer. Anal., 35, 2298–2316, 1998.

Berger, M. and Oliger, J.: Adaptive mesh refinement for hyperbolic partial
differential equations, J. Comp. Phys., 53, 484–512, 1984.

Bermúdez, A. and Vázquez, M.: Upwind methods for hyperbolic conservation
laws, Comput. Fluids, 8, 1049–1071, 1994.

Bradford, S. and Sanders, B.: Finite-Volume Model for Shallow-Water Flooding of
Arbitrary Topography, in: vol. 129, 17th International Conference on Coastal
Engineering, J. Hydraul. Eng., 128, 289–298, 2002.

Burwell, D., Tolkova, E., and Chawla, A.: Diffusion and dispersion characterization of
a numerical tsunami model, Ocean Model., 19, 10–30, 2007.

Courant, R., Friedrichs, F., and Lewy, H.: On the partial difference equations
of mathematical physics, IBM J., 11, 215–234, 1967.

Dao, M. H. and Tkalich, P.: Tsunami propagation modelling – a sensitivity study,
Nat. Hazards Earth Syst. Sci., 7, 741–754, https://doi.org/10.5194/nhess-7-741-2007, 2007.

Fedkiw, S. and Osher, R.: Level Set Methods and Dynamic Implicit Surfaces,
Springer-Verlag, New York, 2003.

Fischer, G.: Ein numerisches Verfahren zur Errechnung von Windstau und Gezeiten
in Randmeeren, Tellus, 11, 60–76, 1959.

Gottschalk, S., Ming, L., and Manocha, D.: OBBTree: A Hierarchical Structure
for Rapid Interference Detection, in: ACM Siggraph '96,
4–9 August 1996, New Orleans, LA, USA, 1996.

Grilli, S., Ioualalen, M., Asavanant, J., Shi, J., Kirby, T., and Watts, P.:
Source Constrainsts and Model Simulation of the December 26, 2004 Indian Ocean
Tsunamia, Port, Ocean Coast. Eng., 133, 414–428, 2007.

Hansen, W.: Theorie zur Errechnung des Wasserstands und der Stromungen in
Randemeeren, Tellus, 8, 287–300, 1956.

Horrillo, J., Wood, G., Kim, B., and Parambath, A.: A simplified 3-D Navier–Stokes
numerical model for landslide tsunami: Application to the Gulf of Mexico, J.
Geophys. Res.-Oceans, 118, 6934–6950, 2013.

Imamura, F.: Review of tsunami simulation with a finite difference method,
Word Scientific Publishing Co., Singapore, 1996.

Imamura, F., Goto, C., Ogawa, Y., and Shuto, N.: Numerical Method of Tsunami
Simulation with the Leap-Frog Scheme, IUGG/IOC Time Project Manuals,
United Nations Educational Scientific and Cultural Organization
(UNESCO), France, 1995.

Kato, K. and Tsuji, Y.: Estimation fo fault parameters of the 1993,
Hokkaido–Nansei–Oki earthquake and tsunami characteristics, Bull. Earthq.
Rest. Inst., 69, 39–66, 1994.

Kirby, J. T., Fengyan, S., Babak, T., Harrisb, J. C., and Stephan, T.: Dispersive
tsunami waves in the ocean: Model equations and sensitivity to dispersion and
Coriolis effects, Ocean Model., 62, 39–55, 2013.

Lawrence Livermore National Laboratory: Silo User's Guide, available at:
https://wci.llnl.gov/codes/silo/media/pdf/LLNL-SM-453191.pdf
(last access: 13 September 2018), 2017.

LeVeque, R. and George, D.: Advanced Numerical Models for Simulating Tsunami
Waves and Runup, World Scientific World Scientific Publishing,
Singapore, 43–74, 2014.

LeVeque, R. J.: Balancing source terms and flux gradients in high-resolution
Godunov methods: the quasi-steady wave-propagation algorithm, J. Comput. Phys.,
146, 346–365, 1998.

LeVeque, R. J.: Finite volume methods for hyperbolic problems, in: Cambridge
University Atlas de Radiologie Clinique de la Presse Medicale,
Cambridge University Press, Cambridge, United Kingdom, 2002.

Liu, P. L., Yeh, H., and Synolakis, C.: Advanced numerical models for simulating
Tsunami waves and runup, Advances in coastal and ocean engineering,
World Scientific,
10, 344 pp., New Jersey, 2008.

Liu, P. W. G. C.: COMCOT, Cornell Multi-grid Coupled Tsunami Model, available
at: http://223.4.213.26/archive/tsunami/cornell/comcot.htm
(last access: 13 September 2018), 1998.

Lynett, P., Wu, T., and Lui, P.: Modeling wave runup with depth-integrated
equations, Coast. Eng., 46, 89–107, 2002.

Macías, J., Castro, M. J., Ortega, S., Escalante, C., and González-Vida,
J. M.: Performance benchmarking of Tsunami-HySEA model for NTHMP's inundation
mapping activitie, Pure Appl. Geophys., 174, 3147–3183, 2017.

Moller, T., Hoffman, N., and Haine, E.: Real-Time Rendering, AK Peters Ltd.,
Massachusetts, 1999.

Motoki, K. and Toshihiro, N.: Damage statistics (Summary of the 2011 off the
Pacific Coast of Tohoku Earthquake damage), Soils Foundat., 52, 780–792, 2012.

Nakamura, T., Tanaka, R., Yabe, T., and Takizawa, K.: Exactly conservative
semi-Lagrangian scheme for multi-dimensional hyperbolic equations with directional
splitting technique, J. Comput. Phys., 174, 171–207, 2001.

Nicolsky, D., Sileimani, E., and Hansen, R.: Validation and verification of a
numerical model for tsunami propagation and runup, Pure Appl. Geophys., 168, 1199–1222, 2011.

NTHMP: National Tsunami Hazard Mitigation Program (NTHMP), in: Proceedings and
Results of the 2011 NTHMP Model Benchmarking Workshop, NOAA Special Report,
Department of Commerce/NOAA/NTHMP, Boulder, CO, 2012.

NVIDIA: CUDA Zone, available at: https://developer.nvidia.com/cuda-zone
(last access: 13 September 2018), 2017a.

NVIDIA: Tesla P100 Datasheet, available at: https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
(last access: 13 September 2018), 2017b.

Nwogu, O.: An alternative form of the Boussinesq equations for nearshore wave
propagation, Coast. Ocean Eng., 119, 618–638, 1993.

Oceans (GEBCO): T. G. B. C. of the: GEBCO, available at: http://www.gebco.net/
(last access: 13 September 2018), 2017.

Ogata, Y. and Takashi, Y.: Multi-Dimensional Semi-Lagrangian Characteristic
Approach to the Shallow Water Equations by the CIP Method, Int. J. Comput. Eng.
Sci., 05, 699–730, https://doi.org/10.1142/S1465876304002642, 2004.

Peregrine, D.: Long waves on a beach, J. Fluid Mech., 27, 815–827, 1967.

Plant, N., Kacey, E., Kaihatu, J., Veeramony, J., Hsu, L., and Todd, H.: The
effect of bathymetric filtering on nearshore process model results, Coast. Eng.,
56, 484–493, 2009.

Reed, D.: User Datagram Protocol (UDP), RFC 768,
available at: https://tools.ietf.org/html/rfc768
(last access: 13 September 2018), 1980.

Regional Integrated Multi-Hazard Early Warning System: RIMES, available at:
http://www.rimes.int/ (last access: 13 September 2018), 2017.

RIMES: Tsunami Hazard and Risk Assessment and Evacuation Planning – Hambantota,
Sri Lanka, Regional Integrated Multi-Hazard Early Warning System,
RIMES program unit, Pathumthani, Thailand, 2014.

Roeber, V. and Cheung, K. F.: Boussinesq-type model for energetic breaking
waves in fringing reef enviroments, Coast. Eng., 70, 1–20, 2012.

Rusanov, V.: Characteristics of the general equations of gas dynamics, Zhurnal
Vychislistelnoi Mathematiki Mathematicheskoi Fiziki, 3, 508–527, 1963.

Sagan, H.: Space-Filling Curves, Universitext, Springer-Verlag, New York, 1994.

Shi, F., Kirby, J. T., Geiman, J. D., and Grilli, S.: A high-order adaptive
time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal
inundation, Ocean Model., 43, 36–51, 2012.

Smylie, L. and Mansinha, D. E.: The Displacement Fields of Inclined Faults, B.
Seismol. Soc. Am., 61, 1433–1440, 1971.

Srivihoka, P., Honda, K., Ruangrassamee, A., Muangsinc, V., Naparatb, P.,
Foytong, P., Promdumrong, N., Aphimaeteethomrong, P., Intaveec, A., Layug, J.
E., and Kosinc, T.: Development of an online tool for tsunami inundation
simulation and tsunami loss estimation, Cont. Shelf Res., 79, 3–15, 2014.

Stoker, J. J.: Water Waves: The Mathematical Theory with Applications,
Wiley-Interscience, Wiley-Interscience, New York, 1992.

Supparsri, A., Koshimura, S., and Imamura, F.: Developing tsunami fragility
curves based on the satellite remote sensing and the numerical modeling of the
2004 Indian Ocean tsunami in Thailand, J. Nat. Hazards Earth Sci., 11, 173–189, 2011.

Swarztrauber, P. N., Williamson, D. L., and Drake, J. B.: The cartesian method
for solving partial differential equations in spherical, Dynam. Atmos. Oceans,
27, 679–706, 1997.

Synolakis, C. E.: The runup of solitary Waves, J. Fluid Mech., 185, 523–545, 1987.

Szauer, G.: Game Physics Cookbook, Amazon Digital Services,
Birmingham, UK, 2017.

Takahashi, T.: Benchmark Problem 4. The 1993 Okushiri tsunami, Data collected,
Conditions and Phenomena, in: Long waves runup models, edited by: Yeh, H., Piu,
P., and Synolakis, C., Word Scientific Publishing Co.,
Singapore, 384–403, 1996.

Thacker, W. C.: Some exact solutions to the nonlinear shallow-water wave equations,
J. Fluid Mech., 107, 499–508, 1981.

Titov, V. and Synolakis, C.: Evolution and runup of the breaking and nonbreaking
waves using VTSC2, J. Waterway, Port, Coast. Ocean Eng., 126, 308–316, 1995.

Titov, V., Rabinovich, A., Mojfeld, H., Thomson, R., and Gonzales, F.: The
Global Reach of the 26 December 2004 Sumatra Tsunami, Science, 309, 2045–2048, 2005.

Toro, F.: Shock-capturing methods for free-surface shallow flows, John
Wisley & Sons, AK Peters Ltd., London, 2010.

Tsubame, T. I.: Manual Tsubame 3.0, available at: http://www.t3.gsic.titech.ac.jp/
(last access: 13 September 2018), 2017.

Utsumi, T., Kunugi, T., and Aoki, T.: Stability and accuracy of the cubic
interpolated propagation scheme, Comput. Phys. Commun., 101, 9–20, 1997.

Vazhenin, A., Lavrentiev, M., Romanenko, A., and Marchuk, A.: Acceleration of
tsunami wave propagation modeling based on re-engineering of computational
components, Int. J. Comput. Sci. Network Secur., 13, 32–70, 2013.

Vincent, S., Caltagirone, J. P., and Bonneton, P.: Numerical modeling of bore
propagation and run-up on sloping beaches using a MacCormack TVD scheme, J.
Hydraul. Res., 39, 41–49, 2001.

Wang, D., Becker, N. C., Walsh, D., Fryer, G. J., Weinstein, S. A., McCreery,
C. S., Sardina, V., Hsu, V., Hirshorn, B. F., Hayes, G. P., Duputel, Z., Rivera,
L., Kanamori, H., Koyangai, K., and Shiro, B.: Real-time forecasting of the
April 11, 2012, Sumatra Tsunami, Geophys. Res. Lett., 39,
L19601, https://doi.org/10.1029/2012GL053081, 2012.

Wei, G., Kirby, J., Grilli, S. T., and Subramanya, R.: Fully nonlinear Boussinesq
model for free surface waves. Part 1: Highly nonlinear unsteady waves, J Fluid
Mech., 294, 71–92, 1995.

WHO: Indonesia situation reports, available at: http://www.who.int/hac/crises/idn/sitreps/en/
(last access: 13 September 2018), 2014.

Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., and Swarztraube, P. N.:
A standard test set for numerical approximations to the shallow water equations
in spherical geometry, J. Comput. Phys., 102, 211–224, 1992.

Yabe, T. and Aoki, T.: A universal solver for hyperbolic equations by
Cubic-Polynomial Interpolation I. One-dimensional solver, Comp. Phys. Comm.,
66, 219–232, 1991.

Yabe, T., Tanaka, R., Nakamura, T., and Xiao, F.: An Exactly Conservative
Semi-Lagrangian Scheme (CIP–CSL) in One Dimension, Mon. Weather Rev.,
129, 332–344, 2001.

Yamamoto, S. and Daiguji, H.: Higher-order-accurate upwind schemes for solving
the compressible Euler and Navier-Stokes equations, Comput. Fluids, 22, 259–270, 1993.

Yamazaki, Y., Cheung, K. F., and Kowalik, Z.: Depth-integrated, non-hydrostatic
model with grid nesting for tsunami generation, propagation, and run-up, Int.
J. Numer. Meth. Fluids, 67, 2081–2107, 2011.

Yeh, H., Liu, P., Briggs, M., and Synolakis, C.: Propagation and amplification
of tsunamis at coastal boundaries, Nature, 372, 353–355, 1994.

Yerry, M. and Shephard, M.: Automatic three-dimensional mesh generation by the
modified-octree technique, J. Numer. Meth. Eng., 32, 709–749, 1991.

Zaytsev, A., Yalciner, A., Chernov, A., Pelinovsky, E., and Kurkin, A.: NAMI
DANCE, available at: http://namidance.ce.metu.edu.tr
(last access: 13 September 2018), 2006.

Zhang, Y. and Baptista, A. M.: An efficient and robust tsunami model on
unstructured grids, Pure Appl. Geophys., 165, 2229–2248, 2008.

Zhou, J. G., Causon, M. D., Mingham, C., and Ingram, G.: The surface gradient
method for the treatment of source terms in the shallow-water equations, J.
Comp. Phys., 168, 1–52, 2001.