Articles | Volume 18, issue 10
https://doi.org/10.5194/nhess-18-2625-2018
https://doi.org/10.5194/nhess-18-2625-2018
Research article
 | 
02 Oct 2018
Research article |  | 02 Oct 2018

Large-scale physical modelling study of a flexible barrier under the impact of granular flows

Dao-Yuan Tan, Jian-Hua Yin, Wei-Qiang Feng, Jie-Qiong Qin, and Zhuo-Hui Zhu

Related subject area

Landslides and Debris Flows Hazards
Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo)
Jean-Claude Maki Mateso, Charles L. Bielders, Elise Monsieurs, Arthur Depicker, Benoît Smets, Théophile Tambala, Luc Bagalwa Mateso, and Olivier Dewitte
Nat. Hazards Earth Syst. Sci., 23, 643–666, https://doi.org/10.5194/nhess-23-643-2023,https://doi.org/10.5194/nhess-23-643-2023, 2023
Short summary
Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria, based on orthophotos and lidar data since 1947
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023,https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management
Tom Birien and Francis Gauthier
Nat. Hazards Earth Syst. Sci., 23, 343–360, https://doi.org/10.5194/nhess-23-343-2023,https://doi.org/10.5194/nhess-23-343-2023, 2023
Short summary
Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023,https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria)
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023,https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary

Cited articles

Arattano, M. and Marchi, L.: Measurements of debris flow velocity through cross-correlation of instrumentation data, Nat. Hazards Earth Syst. Sci., 5, 137–142, https://doi.org/10.5194/nhess-5-137-2005, 2005.
Armanini, A.: On the dynamic impact of debris flows, in: Recent developments on debris flows, edited by: Armanini, A. and Michiue, M., 208–226, Springer, Berlin, Heidelberg, 1997.
ASTM: ASTM C29/C29M-17, Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate, ASTM International, West Conshohocken, PA, available at: www.astm.org (last access: 26 September 2018), 2017.
Bugnion, L., McArdell, B. W., Bartelt, P., and Wendeler, C.: Measurements of hillslope debris flow impact pressure on obstacles, Landslides, 9, 179–187, 2012.
Canelli, L., Ferrero, A. M., Migliazza, M., and Segalini, A.: Debris flow risk mitigation by the means of rigid and flexible barriers – experimental tests and impact analysis, Nat. Hazards Earth Syst. Sci., 12, 1693–1699, https://doi.org/10.5194/nhess-12-1693-2012, 2012.
Download
Short summary
This study presents the large-scale test results of dry granular flows impacting a flexible barrier. Motions and deposition characteristics of granular flows are described and analysed. Impact forces on the flexible barrier directly and on the supporting structures are measured and compared. It is found that the flexible ring net can reduce the impact force from a granular flow with large deformation. Furthermore, existing simple approaches for impact force estimation are verified.
Altmetrics
Final-revised paper
Preprint