Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 18, issue 11 | Copyright
Nat. Hazards Earth Syst. Sci., 18, 2809-2823, 2018
https://doi.org/10.5194/nhess-18-2809-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 30 Oct 2018

Research article | 30 Oct 2018

Approach for combining fault and area sources in seismic hazard assessment: application in south-eastern Spain

Alicia Rivas-Medina1,2, Belen Benito1, and Jorge Miguel Gaspar-Escribano1 Alicia Rivas-Medina et al.
  • 1Departamento de Ingeniería Topográfica y Cartografía, Universidad Politécnica de Madrid, Madrid, Spain
  • 2Departamento de Ingeniería Civil, Universidad de Concepción, Concepción, Chile

Abstract. This paper presents a methodological approach to seismic hazard assessment based on a hybrid source model composed of faults as independent entities and zones containing residual seismicity. The seismic potential of both types of sources is derived from different data: for the zones, the recurrence model is estimated from the seismic catalogue. For fault sources, it is inferred from slip rates derived from palaeoseismicity and GNSS (Global Navigation Satellite System) measurements.

Distributing the seismic potential associated with each source is a key question when considering hybrid zone and fault models, and this is normally resolved using one of two possible alternatives: (1) considering a characteristic earthquake model for the fault and assigning the remaining magnitudes to the zone, or (2) establishing a cut-off magnitude, Mc, above which the seisms are assigned to the fault and below which they are considered to have occurred in the zone. This paper presents an approach to distributing seismic potential between zones and faults without restricting the magnitudes for each type of source, precluding the need to establish cut-off Mc values beforehand. This is the essential difference between our approach and other approaches that have been applied previously.

The proposed approach is applied in southern Spain, a region of low-to-moderate seismicity where faults move slowly. The results obtained are contrasted with the results of a seismic hazard method based exclusively on the zone model. Using the hybrid approach, acceleration values show a concentration of expected accelerations around fault traces, which is not appreciated in the classic approach using only zones.

Publications Copernicus
Download
Short summary
We present an approach for seismic hazard assessment that considers a hybrid source model composed of faults and zones containing the remaining seismicity. The seismic-moment rate is used to distribute seismic potential, avoiding double counting. The approach is applied in SE Spain, a region of low-to-moderate seismicity. Results show a concentration of expected accelerations around fault traces using the hybrid approach, which is not appreciated in the classic approach using zones exclusively.
We present an approach for seismic hazard assessment that considers a hybrid source model...
Citation
Share