Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.281 IF 2.281
  • IF 5-year value: 2.693 IF 5-year 2.693
  • CiteScore value: 2.43 CiteScore 2.43
  • SNIP value: 1.193 SNIP 1.193
  • SJR value: 0.965 SJR 0.965
  • IPP value: 2.31 IPP 2.31
  • h5-index value: 40 h5-index 40
  • Scimago H index value: 73 Scimago H index 73
Volume 18, issue 11 | Copyright
Nat. Hazards Earth Syst. Sci., 18, 2893-2919, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Nov 2018

Research article | 07 Nov 2018

The role of synoptic processes in mudflow formation in the piedmont areas of Uzbekistan

Gavkhar Mamadjanova1,2, Simon Wild1,3, Michael A. Walz1, and Gregor C. Leckebusch1 Gavkhar Mamadjanova et al.
  • 1School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
  • 2Uzhydromet (Centre of Hydrometeorological Service of the Republic of Uzbekistan), Tashkent, 100052, Uzbekistan
  • 3Barcelona Supercomputing Center, 08034, Barcelona, Spain

Abstract. The purpose of this study is to understand atmospheric factors, which cause mudflow variability on interannual and longer timescales, from local to synoptic scales. In a first step, historical data of mudflow occurrences in Uzbekistan provided by the Centre of Hydrometeorological Service of the Republic of Uzbekistan (Uzhydromet) for more than 140 years were analysed. During the investigation period a total of about 3000 mudflow events were observed with about 21 events per year on average. The majority of mudflows occur during the advection of westerly airflow when moist air from central and southern Europe reaches Uzbekistan. This synoptic weather type (SWT) can be related to one of the 15 primary synoptic circulation types over central Asia (CA) and Uzbekistan, which were subjectively derived by Bugayev and Giorgio in the 1930s and 1940s. To understand the main atmospheric regimes steering the variability in mudflow occurrences, we additionally applied an objective classification following the circulation weather type (CWT) approach. By means of the CWT approach, we found that on mudflow days the frequencies of cyclonic (C), westerly (W), south-westerly (SW) and north-westerly (NW) stream flows are increased in comparison to the climatological frequency of the occurrence of these circulation weather patterns. Results confirm that CWT westerly airflow initiates relatively more mudflow events comparing to other CWTs in the study area. An integrated approach of the CWT classification and an antecedent daily rainfall model are combined together in logistic regression analysis to construct a mudflow-triggering precipitation threshold for every CWT class. In general W, SW and C weather types require less antecedent rainfall to trigger mudflow occurrences in the study area. This technique is thus shown to be applicable to coarse-resolution climate model diagnostics.

Publications Copernicus
Short summary
The focus of this study is mudflow response to atmospheric conditions, notably major weather types and their linkages with precipitation climatology initiating mudflow events in Uzbekistan. The desired outcome of this study is to eventually select representative weather types which can then be applied to climate change studies.
The focus of this study is mudflow response to atmospheric conditions, notably major weather...