Articles | Volume 18, issue 11
https://doi.org/10.5194/nhess-18-2933-2018
https://doi.org/10.5194/nhess-18-2933-2018
Research article
 | 
08 Nov 2018
Research article |  | 08 Nov 2018

Quantification of extremal dependence in spatial natural hazard footprints: independence of windstorm gust speeds and its impact on aggregate losses

Laura C. Dawkins and David B. Stephenson

Related authors

The 21st century decline in damaging European windstorms
Laura C. Dawkins, David B. Stephenson, Julia F. Lockwood, and Paul E. Maisey
Nat. Hazards Earth Syst. Sci., 16, 1999–2007, https://doi.org/10.5194/nhess-16-1999-2016,https://doi.org/10.5194/nhess-16-1999-2016, 2016
Short summary

Related subject area

Atmospheric, Meteorological and Climatological Hazards
Return levels of extreme European windstorms, their dependency on the North Atlantic Oscillation, and potential future risks
Matthew D. K. Priestley, David B. Stephenson, Adam A. Scaife, Daniel Bannister, Christopher J. T. Allen, and David Wilkie
Nat. Hazards Earth Syst. Sci., 23, 3845–3861, https://doi.org/10.5194/nhess-23-3845-2023,https://doi.org/10.5194/nhess-23-3845-2023, 2023
Short summary
Wind as a natural hazard in Poland
Tadeusz Chmielewski and Piotr A. Bońkowski
Nat. Hazards Earth Syst. Sci., 23, 3839–3844, https://doi.org/10.5194/nhess-23-3839-2023,https://doi.org/10.5194/nhess-23-3839-2023, 2023
Short summary
Climatological occurrences of hail and tornadoes associated with mesoscale convective systems in the United States
Jingyu Wang, Jiwen Fan, and Zhe Feng
Nat. Hazards Earth Syst. Sci., 23, 3823–3838, https://doi.org/10.5194/nhess-23-3823-2023,https://doi.org/10.5194/nhess-23-3823-2023, 2023
Short summary
Characteristics of cloud-to-ground lightning (CG) and differences between +CG and −CG strokes in China regarding the China National Lightning Detection Network
Ruijiao Jiang, Guoping Zhang, Shudong Wang, Bing Xue, Zhengshuai Xie, Tingzhao Yu, Kuoyin Wang, Jin Ding, and Xiaoxiang Zhu
Nat. Hazards Earth Syst. Sci., 23, 3747–3759, https://doi.org/10.5194/nhess-23-3747-2023,https://doi.org/10.5194/nhess-23-3747-2023, 2023
Short summary
The climatology and nature of warm-season convective cells in cold-frontal environments over Germany
George Pacey, Stephan Pfahl, Lisa Schielicke, and Kathrin Wapler
Nat. Hazards Earth Syst. Sci., 23, 3703–3721, https://doi.org/10.5194/nhess-23-3703-2023,https://doi.org/10.5194/nhess-23-3703-2023, 2023
Short summary

Cited articles

Blanchet, J., Marty, C., and Lehning, M.: Extreme value statistics of snowfall in the Swiss Alpine region, Water Resour. Res., 45, W05424, https://doi.org/10.1029/2009WR007916, 2009. a
Bonazzi, A., Cusack, S., Mitas, C., and Jewson, S.: The spatial structure of European wind storms as characterized by bivariate extreme-value Copulas, Nat. Hazards Earth Syst. Sci., 12, 1769–1782, https://doi.org/10.5194/nhess-12-1769-2012, 2012. a, b, c, d, e
Bortot, P., Coles, S., and Tawn, J.: The multivariate Gaussian tail model: an application to oceanographic data, Appl. Stat., 49, 31–49, 2000. a, b, c
Chu, C. R., Parlange, M. B., Katul, G. G., and Albertson, J. D.: Probability density functions of turbulent velocity and temperature in the atmospheric surface layer, Water Resour. Res., 32, 1681–1688, 1996. a
Coles, S. G.: An Introduction to Statistical Modeling of Extreme Values, Springer, London, 2001. a, b, c
Download
Short summary
Natural hazard losses are sensitive to the dependency between extreme values of the hazard variable at different spatial locations. It is therefore important to correctly identify and quantify dependency to accurately model the hazard and its resulting losses. Through application to a large data set of windstorm hazard footprints, this study demonstrates how extreme-value methods can be used to explore extremal dependency and hazard losses in very high dimensional natural hazard data sets.
Altmetrics
Final-revised paper
Preprint